11 resultados para antimedian set
em Cochin University of Science
Resumo:
The median (antimedian) set of a profile π = (u1, . . . , uk) of vertices of a graphG is the set of vertices x that minimize (maximize) the remoteness i d(x,ui ). Two algorithms for median graphs G of complexity O(nidim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes
Resumo:
The set of vertices that maximize (minimize) the remoteness is the antimedian (median) set of the profile. It is proved that for an arbitrary graph G and S V (G) it can be decided in polynomial time whether S is the antimedian set of some profile. Graphs in which every antimedian set is connected are also considered.
Resumo:
A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex x 2 V.G/ the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O.mlog n/ time whether G is a median graph with geodetic number 2
Resumo:
An antimedian of a pro le = (x1; x2; : : : ; xk) of vertices of a graph G is a vertex maximizing the sum of the distances to the elements of the pro le. The antimedian function is de ned on the set of all pro les on G and has as output the set of antimedians of a pro le. It is a typical location function for nding a location for an obnoxious facility. The `converse' of the antimedian function is the median function, where the distance sum is minimized. The median function is well studied. For instance it has been characterized axiomatically by three simple axioms on median graphs. The median function behaves nicely on many classes of graphs. In contrast the antimedian function does not have a nice behavior on most classes. So a nice axiomatic characterization may not be expected. In this paper such a characterization is obtained for the two classes of graphs on which the antimedian is well-behaved: paths and hypercubes.
Resumo:
The distance DG(v) of a vertex v in an undirected graph G is the sum of the distances between v and all other vertices of G. The set of vertices in G with maximum (minimum) distance is the antimedian (median) set of a graph G. It is proved that for arbitrary graphs G and J and a positive integer r 2, there exists a connected graph H such that G is the antimedian and J the median subgraphs of H, respectively, and that dH(G, J) = r. When both G and J are connected, G and J can in addition be made convex subgraphs of H.
Resumo:
this paper, the median and the antimedian of cographs are discussed. It is shown that if G, and G2 are any two cographs, then there is a cograph that is both Eulerian and Hamiltonian having Gl as its median and G2 as its antimedian. Moreover, the connected planar and outer planar cographs are characterized and the median and antimedian graphs of connected, planar cographs are listed.
Resumo:
Antimedian graphs are introduced as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple. The Cartesian product of graphs is antimedian if and only if its factors are antimedian. It is proved that multiplying a non-antimedian vertex in an antimedian graph yields a larger antimedian graph. Thin even belts are introduced and proved to be antimedian. A characterization of antimedian trees is given that leads to a linear recognition algorithm.
Resumo:
In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention
Resumo:
It is believed that every fuzzy generalization should be formulated in such a way that it contain the ordinary set theoretic notion as a special case. Therefore the definition of fuzzy topology in the line of C.L.CHANG E9] with an arbitrary complete and distributive lattice as the membership set is taken. Almost all the results proved and presented in this thesis can, in a sense, be called generalizations of corresponding results in ordinary set theory and set topology. However the tools and the methods have to be in many of the cases, new. Here an attempt is made to solve the problem of complementation in the lattice of fuzzy topologies on a set. It is proved that in general, the lattice of fuzzy topologies is not complemented. Complements of some fuzzy topologies are found out. It is observed that (L,X) is not uniquely complemented. However, a complete analysis of the problem of complementation in the lattice of fuzzy topologies is yet to be found out
Resumo:
The median problem is a classical problem in Location Theory: one searches for a location that minimizes the average distance to the sites of the clients. This is for desired facilities as a distribution center for a set of warehouses. More recently, for obnoxious facilities, the antimedian was studied. Here one maximizes the average distance to the clients. In this paper the mixed case is studied. Clients are represented by a profile, which is a sequence of vertices with repetitions allowed. In a signed profile each element is provided with a sign from f+; g. Thus one can take into account whether the client prefers the facility (with a + sign) or rejects it (with a sign). The graphs for which all median sets, or all antimedian sets, are connected are characterized. Various consensus strategies for signed profiles are studied, amongst which Majority, Plurality and Scarcity. Hypercubes are the only graphs on which Majority produces the median set for all signed profiles. Finally, the antimedian sets are found by the Scarcity Strategy on e.g. Hamming graphs, Johnson graphs and halfcubes