6 resultados para ambient debate
em Cochin University of Science
Resumo:
The dynamics of plasma plume, formed by the laser-blow-off of multicomponent LiF-C thin film under various ambient pressures ranging from high vacuum to argon pressure of 3 Torr, has been studied using fast imaging technique. In vacuum, the plume has ellipsoidal shape. With the increase in the ambient pressure, sharp plume boundary is developed showing a focusing-like confinement in the lateral space behavior in the front end, which persists for long times. At higher ambient pressure (> 10−1 Torr ), structures are developed in the plasma plume due to hydrodynamic instability/turbulences.
Resumo:
The effect of ambient gas on the dynamics of the plasma generated by laser ablation of a carbon target using 1.06 μm radiation from a Q-switched Nd:YAG laser has been investigated using a spectroscopic technique. The emission characteristics of the carbon plasma produced in argon, helium and air atmospheres are found to depend strongly on the nature and pressure of the surrounding gas. It has been observed that hotter and denser plasmas are formed in an argon atmosphere rather than in helium or air as an ambient.
Resumo:
A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.
Resumo:
Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.
Resumo:
A study has been carried out to understand the influence of ambient gases on the dynamics of laser-blow-off plumes of multi-layered LiF–C thin film. Plume images at various time intervals ranging from 100 to 3000 ns have been recorded using an intensified CCD camera. Enhancement in the plume intensity and change in size and shape occurs on introducing ambient gases and these changes are highly dependent on the nature and composition of the ambient gas used. Velocity of the plume was found to be higher in helium ambient whereas intensity enhancement is greater in argon environment. The plume shapes have maximum size at 10−2 and 10−1 Torr of Ar and He pressures, respectively. As the background pressure increases further (>10−2 Torr: depending on the nature of gas), the plume gets compressed/focused in the lateral direction. Internal structure formation and turbulences are observed at higher pressures (>10−1 Torr) in both ambient gases.