3 resultados para alphabet, collection, reorganization

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic resources have become a vital part of an academic library especially in universities and higher education institutions. The availability of electronic resources and the acceptance of the fonnat among the academics are rising day by day. As far as engineering students are concerned, they are much techno-savy and are more used to electronic resources. So it has become necessary for the libraries of engineering institutions to subscribe and provide access to electronic resources to satisfy its user community. Many studies have identified that academics are much preferring online journals and databases than their print counter-parts

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Academic libraries worldwide have witnessed a number of trends and paradigm shifts over the last decade. It is vital for university libraries to develop a collection of high standards to satisfy academics and researchers for supporting the vision and mission of a university. The area of collection development and management is the most important part of any library. This paper reports on the problems and prospects of collection and asset management of the University Library of Cochin University of Science and Technology (CUSAT). The insight for the paper comes from the authors’ first-hand experience supported by literature review. Detailed information regarding the purchase of books, serials, policies regarding the acquisition, and changing trends and problems were collected from the official records with the help of a structured data sheet. The study discovers the current trends in collection and asset management in CUSAT and point out the changes likely to be adopted in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis comprises five chapters including the introductory chapter. This includes a brief introduction and basic definitions of fuzzy set theory and its applications, semigroup action on sets, finite semigroup theory, its application in automata theory along with references which are used in this thesis. In the second chapter we defined an S-fuzzy subset of X with the extension of the notion of semigroup action of S on X to semigroup action of S on to a fuzzy subset of X using Zadeh's maximal extension principal and proved some results based on this. We also defined an S-fuzzy morphism between two S-fuzzy subsets of X and they together form a category S FSETX. Some general properties and special objects in this category are studied and finally proved that S SET and S FSET are categorically equivalent. Further we tried to generalize this concept to the action of a fuzzy semigroup on fuzzy subsets. As an application, using the above idea, we convert a _nite state automaton to a finite fuzzy state automaton. A classical automata determine whether a word is accepted by the automaton where as a _nite fuzzy state automaton determine the degree of acceptance of the word by the automaton. 1.5. Summary of the Thesis 17 In the third chapter we de_ne regular and inverse fuzzy automata, its construction, and prove that the corresponding transition monoids are regular and inverse monoids respectively. The languages accepted by an inverse fuzzy automata is an inverse fuzzy language and we give a characterization of an inverse fuzzy language. We study some of its algebraic properties and prove that the collection IFL on an alphabet does not form a variety since it is not closed under inverse homomorphic images. We also prove some results based on the fact that a semigroup is inverse if and only if idempotents commute and every L-class or R-class contains a unique idempotent. Fourth chapter includes a study of the structure of the automorphism group of a deterministic faithful inverse fuzzy automaton and prove that it is equal to a subgroup of the inverse monoid of all one-one partial fuzzy transformations on the state set. In the fifth chapter we define min-weighted and max-weighted power automata study some of its algebraic properties and prove that a fuzzy automaton and the fuzzy power automata associated with it have the same transition monoids. The thesis ends with a conclusion of the work done and the scope of further study.