11 resultados para alcohol and smoking
em Cochin University of Science
Resumo:
Co(II), Ni(II) and Cu(II) complexes of dimethylglyoxime and N,N-ethylenebis(7-methylsalicylideneamine) have been synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. The hybrid materials obtained have been characterized by elemental analysis, SEM, XRD, surface area, pore volume, magnetic moment, FTIR, UV-Vis and EPR techniques. Analysis of data indicates the formation of complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activities for hydrogen peroxide decomposition and oxidation of benzyl alcohol and ethylbenzene of zeolite complexes are reported. Zeolite Cu(II) complexes were found to be more active than the corresponding Co(II) and Ni(II) complexes for oxidation reactions. The catalytic properties of the complexes are influenced by their geometry and by the steric environment of the active sites. Zeolite complexes are stable enough to be reused and are suitable to be utilized as partial oxidation catalysts.
Resumo:
In this thesis, the production and characterization of ligninolytic enzymes using the fungi isolated from mangrove area are studied. The objective of the present work are isolation and screening of dye decolorizing micro-organisms from mangrove area, screening of the selected microorganisms for the production of lignin degrading enzymes, identification of the potent micro-organisms, characterization of the crude enzyme, lignin peroxidase, of the selected fungi—Aspergillus sp. SIP 11 and Penicillium sp. SIP 10 etc. This included the determination of the optimum pH, temperature, veratryl alcohol and H2O2 concentration. Besides the stability of crude LiP at different pHs and temperatures were studied. The immense applications, particularly in bioremediation, to which the lignin degrading micro-organisms could be used make this study important, the ascomycetes and deuteromycetes fungi, especially form the marine environment were studied with respect to their ligninolytic enzyme system making this study an initial step in unraveling the vast hidden potential of these microbes in bioremediation, the marine microbes are halophilic in nature which make them better suited to cope with the high salinity of industrial effluents thereby giving them added advantage in the filed of bioremediation. The thesis deals with the isolation and screening of lignin degrading enzyme-producing microbes from mangrove area. The identification of the most potent fungal isolates and characterization of LiP from these are also done.
Resumo:
A methylene-blue-sensitized polymer blend of polyvinyl alcohol and polyacrylic acid is fabricated and tested for holographic recording. It was found to have good characteristics such as high sensitivity, storage stability, ease of fabrication, and environmental stability. Optimization of the ratio of polyvinyl alcohol polyacrylic acid, the sensitizer concentration, pH, energy, diffraction efficiency measurements, etc., have been done. pH is found to have a great influence on the recovery of the dye in this matrix. The results of experimental investigations into the properties of this new material are reported.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efficiency of 6.3% was obtained without any fixing at a dye concentration of 9.3 10 4 mol/l at an exposure of 750 mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A methylene-blue-sensitized polymer blend of polyvinyl alcohol and polyacrylic acid is fabricated and tested for holographic recording. It was found to have good characteristics such as high sensitivity, storage stability, ease of fabrication, and environmental stability. Optimization of the ratio of polyvinyl alcohol polyacrylic acid, the sensitizer concentration, pH, energy, diffraction efficiency measurements, etc., have been done. pH is found to have a great influence on the recovery of the dye in this matrix. The results of experimental investigations into the properties of this new material are reported.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction . The PVA-VAc ratio was optimized at 2:1. Diffraction efficiency of 6.3% was obtained without any fixing at a dye concentration of 9.3 10 4 mol/l at an exposure of 750 mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
A new photopolymerizable recording media is introduced based on poly (vinyl alcohol) and vinyl acetate sensitized with methylene blue. It is observed that this MBPVA/VAc system can be reused a number of times without significant decrease in diffraction efficiency. The PVA-VAc ratio was optimized at 2:1. Diffraction efcienc4y of 6.3% was obtained without any fixing at a dye concentration of 9.3 x 10- mol/l at an exposure of 750mJ/cm2. The material is attractive on account of its reusability.
Resumo:
In the attempt to find out catalytic potency and properties of the endoglucanase of green mussel, it could be highlighted that the enzyme is efficient in degrading carboxymethylcellulose to reducing sugars. The immobilized enzyme will find applications in the food industry, paper and pulp industry, wood preservation, alcohol and pharmaceutical industry.The purification method employed i.e. Sephadex G100 chromatography employing affinity and exclusion principles simplify the purification procedure.Addition of Mg2+ and Co2+ at 10mM concentrations enhances endoglucanase activity of green mussel.The immobilized endoglucanase can be used for deinking mixed office waste paper. The endoglucanase if supplemented with exoglucanase and B-glucosidase under appropriate conditions would help in the recycling of paper.
Resumo:
LLDPE was blended with poly (vinyl alcohol) and mechanical, thermal, spectroscopic properties and biodegradability were investigated. The biodegradability of LLDPE/PVA blends has been studied in two environments, viz. (1) a culture medium containing Vibrio sp. and (2) a soil environment over a period of 15 weeks. Nanoanatase having photo catalytic activity was synthesized by hydrothermal method using titanium-iso-propoxide. The synthesized TiO2 was characterized by X-Ray diffraction (XRD), BET studies, FTIR studies and scanning electron microscopy (SEM). The crystallite size of titania was calculated to be ≈ 6nm from the XRD results and the surface area was found to be about 310m2/g by BET method. SEM shows that nanoanatase particles prepared by this method are spherical in shape. Linear low density polyethylene films containing polyvinyl alcohol and a pro-oxidant (TiO2 or cobalt stearate with or without vegetable oil) were prepared. The films were then subjected to natural weathering and UV exposure followed by biodegradation in culture medium as well as in soil environment. The degradation was monitored by mechanical property measurements, thermal studies, rate of weight loss, FTIR and SEM studies. Higher weight loss, texture change and greater increments in carbonyl index values were observed in samples containing cobalt stearate and vegetable oil. The present study demonstrates that the combination of LLDPE/PVA blends with (I) nanoanatase/vegetable oil and (ii) cobalt stearate/vegetable oil leads to extensive photodegradation. These samples show substantial degradation when subsequent exposure to Vibrio sp. is made. Thus a combined photodegradation and biodegradation process is a promising step towards obtaining a biodegradable grade of LLDPE.