8 resultados para acetic acid ethyl ester

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of feeding of 6-propyllhiouracil (6-I'fU) and potyunsaturatcd fatty acids (I'UFA) independently and ill combination and administration (ip) of a single close of Iriiodothyronine (I',) (2.51ig/IOOg body wl) along with feeding of 6- PTU and PUFA were studied in cal brain. Dopamine (DA), 5-hydroxytryplophan (5-IIl'I'), serolouin (5-Ill), 5-hydioxy indole acetic acid (5-111AA), norepinephrine (NF) :uul ceinephrinn (I?I'l) contenls were assayed in the hypothalannls and ccrc bral cortex regions. It was found that 6-P"l'U Iccding resulted in decrease in dopamine, 5-III', 5 II I I' and 5 IIiAA in both regions. In animals fed wills PUFA followed by adnliuislralion of T,. the I)A level was found normal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the changes in surface acidity/basicity and catalytic pro~erties of samarium oxide due to surface modification by SO42- ion. The acidity/basicity of the catalysts is determined by titration method using Hammett indicators. Esterification of acetic acid by n-butanol is chosen as a test reaction. Sm203, owing to its high basicity and low acidity, does not catalyze the reaction. But sulphated Sm20J catalyzes the esterification reaction effectively. Activation temperature does not have much effect on the acidity of sulphated samaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron donating properties, surface acidity/ basicity and catalytic activity of cerium - zirconium mixed oxides at various compositions have been reported at an activation temperature of 500 degree C. The catalytic activity for the esterification of acetic acid with n-butanol has heen correlated with electron donating properties and surface acidity/basicity of the oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface electron donor properties of sulphate modified stannic oxide have been determined from the adsorption of electron acceptors of various electron affinities on the oxide surface. The acid base properties of stannic oxide have been determined by titration method using Hammett indicators. Catalytic activities of the oxide for esterification of acetic acid using n-butanol.reduction of cyclohexanone in 2-propanol and oxidation of cyclohexanol with benzophenone have been studied. The data have been correlated with the surface electron donor properties of these oxides. The activity for reduction and oxidation decreases and that for esterification reaction increases on modification with sulphate ion. It has heen found that electron donating capacity decreased when stannic oxide was modified with sulphate ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface acidity/ basicity of TiO2 (rutile) and its sulphate modified form have been determined by titration method using Hammett indicators after activation at different temperatures. The electron donating properties of these oxides are also studied from the adsorption of electron acceptors of different electron affinity values. The data have been correlated with the catalytic activity of these oxides towards esterification of acetic acid using n-butanol, reduction of cyclohexanone in isopropanol and oxidation of cyclohexanol in benzophenone. Catalytic activity for esterification and oxidation reaction parallels the acidity while that for reduction reaction parallels the basicity of these oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The changes in surface acidity/basicity and catalytic activity of cerium oxide due to surface modification by sulphate ion have been investigated. Electron donor properties of both the modified and unmodified oxides have been studied using electron acceptors of various electron affinity values, viz. 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrachloro--l, 4-benzoquinone. p-dinitrobenzene and m-dinitrobenzene in order to find out whether the increase in acidity on suphation is due to the generation of new acidic sites or they are formed at the expense of some of the basic sites. The surface acidity/basicity has been determined using a set of Hammett indicators. The data have been correlated with the catalytic activity of the oxides for esterification of acetic acid using l-butanol, reduction of cyclohexanone with 2- propanol and oxidation of cyclohexanol using benzophenone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lewis acidity of yttrium and dysprosium exchanged zeolite Y and ZSM-5 has been determined by titration method using Hammett indicators. The acidity of the Y form increases with increase in concentration of the rare earth cation in the Y zeolite. It is independent of the amount of the rare earth ion for ZSM-5. The data have been correlated with the activity of these zeolites for the esterification of butanol using acetic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, a novel non-acetone forming butanol and ethanol producer Was isolated and identified. Based on the 16s rDNA sequence BLAST and phylogenetic analyses, it was found to have high similarity with the reported hydrogen producing strains of Clostridium sporogenes. Biochemical studies revealed that it is lipase and protease positive. The lipolytic and proteolytic properties are the very important characteristics of Clostridium sporogenes. Sugar utilization profile studies were positive for glucose, saccharose, cellobiose and weakly positive result to xylose. This study demonstrated C. sporogenes BE01, an isolate from NIIST is having potential to compete with existing, well known butanol producers with the advantage of no acetone in the final solvent mixture. Rice straw hydrolysate is a potent source of substrate for butanol production by C. sporogenes BE01. Additional supplementation of vitamins and minerals were avoided by using rice straw hydrolysate as substrate. Its less growth, due to the inhibitors present in the hydrolysate and also inhibition by products resulted in less efficient conversion of sugars to butanol. Calcium carbonate played an important role in improving the butanol production, by providing the buffering action during fermentation and stimulating the electron transport mediators and redox reactions favoring butanol production. Its capability to produce acetic acid, butyric acid and hydrogen in significant quantities during butanol production adds value to the conversion process of lignocellulosic biomass to butanol. High cell density fermentation by immobilizing the cells on to ceramic particles improved the solvents and VFA production. Reduced sugar utilization from the concentrated hydrolysate could be due to accumulation of inhibitors in the hydrolysate during concentration. Two-stage fermentation was very efficient with immobilized cells and high conversions of sugars to solvents and VFAs were achieved. The information obtained from the study would be useful to develop a feasible technology for conversion of lignocellulosic biomass to biobutanol.