3 resultados para accessory olfactory bulb
em Cochin University of Science
Resumo:
The vast areas of derelict swamps covered by macrophyton and swarmed by insects scattered in different parts of India are at present either under total negligence or utilized as waste disposal dumps. Eventhough Indian subcontinent is ranked among the first ten fish producing countries in the world, the fish production is not at par with the increasing need of protein in the average Indian diet. So the water areas which become unusable for conventional human activities like the swamps could be used for fish culture which would increase the availability of protein in the form of fish flesh, thus providing new opportunities to the fishermen. But the conversion of swamps for fish culture would entail considerable expenditure. Hence the significance of a group of fresh water fishes which have made their favourable abode the muddy swamps of tropics depending partly on accessory _respiration to survive in the inimical environment. The homeostasis achieved in such a hostile, hypoxic medium make them excellent choices for culture in the derelict freshwater bodies of India. These air breathing fishes form an economically important group which are highly esteemed as food fishes in many parts of South Asia and Africa. Though their natural habitat seems to be the marshes, they have also conquered other freshwater bodies like ponds, tanks, rivers and flooded paddy fields. They can also tolerate slightly brackish waters. They are known for their nutritive, invigorating and therapeutic qualities and are recommended by physicians as diet during convalescence (Jhingran, 1982)
Resumo:
Thermodynamic parameters of the atmosphere form part of the input to numerical forecasting models. Usually these parameters are evaluated from a thermodynamic diagram. Here, a technique is developed to evaluate these parameters quickly and accurately using a Fortran program. This technique is tested with four sets of randomly selected data and the results are in agreement with the results from the conventional method. This technique is superior to the conventional method in three respects: more accuracy, less computation time, and evaluation of additional parameters. The computation time for all the parameters on a PC AT 286 machine is II sec. This software, with appropriate modifications, can be used, for verifying various lines on a thermodynamic diagram
Assessment of Convective Activity Using Stability Indices as Inferred from Radiosonde and MODIS Data
Resumo:
The combined use of both radiosonde data and three-dimensional satellite derived data over ocean and land is useful for a better understanding of atmospheric thermodynamics. Here, an attempt is made to study the ther-modynamic structure of convective atmosphere during pre-monsoon season over southwest peninsular India utilizing satellite derived data and radiosonde data. The stability indices were computed for the selected stations over southwest peninsular India viz: Thiruvananthapuram and Cochin, using the radiosonde data for five pre- monsoon seasons. The stability indices studied for the region are Showalter Index (SI), K Index (KI), Lifted In-dex (LI), Total Totals Index (TTI), Humidity Index (HI), Deep Convective Index (DCI) and thermodynamic pa-rameters such as Convective Available Potential Energy (CAPE) and Convective Inhibition Energy (CINE). The traditional Showalter Index has been modified to incorporate the thermodynamics over tropical region. MODIS data over South Peninsular India is also used for the study. When there is a convective system over south penin-sular India, the value of LI over the region is less than −4. On the other hand, the region where LI is more than 2 is comparatively stable without any convection. Similarly, when KI values are in the range 35 to 40, there is a possibility for convection. The threshold value for TTI is found to be between 50 and 55. Further, we found that prior to convection, dry bulb temperature at 1000, 850, 700 and 500 hPa is minimum and the dew point tem-perature is a maximum, which leads to increase in relative humidity. The total column water vapor is maximum in the convective region and minimum in the stable region. The threshold values for the different stability indices are found to be agreeing with that reported in literature.