2 resultados para a best practice process model
em Cochin University of Science
Resumo:
The Kerala model of development mostly bypassed the fishing community, as the fishers form the main miserable groups with respect to many of the socio-economic and quality of life indicators. Modernization drive in the fishing sector paradoxically turns to marginalization drives as far as the traditional fishers in Kerala are concerned. Subsequent management and resource recuperation drives too seemed to be detrimental to the local fishing community. Though SHGs and cooperatives had helped in overcoming many of the maladies in most of the sectors in Kerala in terms of livelihood and employment in the 1980s, the fishing sector by that time had been moving ahead with mechanization and export euphoria and hence it bypassed the fishing sector. Though it has not helped the fishing sector in the initial stages, but because of necessity, it soon has become a vibrant livelihood and employment force in the coastal economy of Kerala. Initial success made it to link this with the governmental cooperative set up and soon SHGs and Cooperatives become reinforcing forces for the inclusive development of the real fishers.The fisheries sector in Kerala has undergone drastic changes with the advent of globalised economy. The traditional fisher folk are one of the most marginalized communities in the state and are left out of the overall development process mainly due to the marginalization of this community both in the sea and in the market due to modernization and mechanization of the sector. Mechanization opened up the sector a great deal as it began to attract people belonging to non-fishing community as moneylenders, boat owners, employers and middle men which often resulted in conflicts between traditional and mechanized fishermen. These factors, together with resource depletion resulted in the backwardness experienced by the traditional fishermen compared to other communities who were reaping the benefits of the overall development scenario.The studies detailing the activities and achievements of fisher folks via Self Help Groups (SHGs) and the cooperative movement in coastal Kerala are scant. The SHGs through cooperatives have been effective in livelihood security, poverty alleviation and inclusive development of the fisher folk (Rajasenan and Rajeev, 2012). The SHGs have a greater role to play as estimated fall in demand for marine products in international markets, which may result in reduction of employment opportunities in fish processing, peeling, etc. Also, technological advancement has made them unskilled to work in this sector making them outliers in the overall development process resulting in poor quality of physical and social infrastructure. Hence, it is all the more important to derive a strategy and best practice methods for the effective functioning of these SHGs so that the
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.