2 resultados para Ybco

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application vistas of superconductors have widened very much since the discovery of high TC superconductors (HTS) as many of the applications can be realised at 77 K rather than going down to 4.2 K, the liquid He temperature. One such application is the HTS current lead which is used to connect a superconducting system with a room temperature power source. Minimising heat leak to the cryogenic environment is the main advantage of introducing current leads into superconducting systems. The properties of HTSS likes zero resistance (avoiding joule heating) and very low thermal conductivity (minimized conductive heat transfer) make them ideal candidates to be used as current leads. There are two forms of HTS current leads. (i) bulk form (tube or rod) prepared either from YBCO or BSCCO and (ii) tape form prepared from Bi-2223 multifilamentary tapes. The tape form of current leads has many advantages with respect to the mechanical and thermal stability related criteria. Crucial information on various aspects of HTS current lead development are not available in the literature as those are kept proprietary by various companies around the world. The present work has been undertaken to tailor the properties of multifilamentary tapes for the current lead application and to optimise the processing parameters of the same for enhanced critical current density and field tolerance. Also it is the aim of the present investigation is to prepare prototype current leads engineered for operation in conduction cooled mode and test them for operational stability