6 resultados para X-ray crystal structures

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is concentrated on the studies of two novel semicarbazones, di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL1) and quinoline-2-carboxaldehyde-N4-phenyl-3-semicarbazone (HL2). The compositions of these semicarbazones were determined by the CHN analyses. For the characterization of these compounds we have used IR, UV and NMR spectral studies. The molecular structure of quinoline-2-carboxaldehyde-N4-phenyl-3- semicarbazone (HL2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Zn(II), Cd(II), Cu(II), Ni(II), Co(II) and Mn(II) complexes of these semicarbazones, HL1 and HL2. These complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some Zn(II) and Cd(II) compounds suitable for X-ray diffraction studies. For other complexes we could not isolate single crystals of good quality for single crystal X-ray diffraction studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unusual coordination modes of semicarbazones when bound to metals, the wide applications and structural diversity of metal complexes of semicarbazones provoked us to synthesize and characterize the tridentate ONO and NNO-donor semicarbazones and their transition metal complexes. This work is focused on the studies on complexes of three N4-phenylsemicarbazones synthesized by changing the carbonyl compounds. This work is concerned with the studies of two new semicarbazones, 2- formylpyridine-N4-phenylsemicarbazone (HL1) and 3-ethoxysalicylaldehyde- N4-phenylsemicarbazone (H2L2) and a reported semicarbazone 2-benzoylpyridine-N4-phenylsemicarbazone (HL3) [29]. The compositions of these semicarbazones were determined by the CHN analyses and IR, UV and NMR spectral studies were used for the characterization of these compounds. The molecular structure of 3-ethoxysalicylaldehyde-N4-phenylsemicarbazone (H2L2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Cu(II), Cd(II), Zn(II) and Ni(II) complexes of these three semicarbazones. The complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some complexes of all metals suitable for X-ray diffraction studies. This thesis is divided into six chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mn(II) complexes derived from a set of acylhydrazones were synthesised and characterized by elemental analyzes, IR, UV–vis and X-band EPR spectral studies as well as conductivity and magnetic susceptibility measurements. In the reported complexes, the hydrazones exist either in the keto or enolate form, as evidenced by IR spectral data. Crystal structures of two complexes are well established using single crystal X-ray diffraction studies. In both of these complexes two equivalent monoanionic ligands are coordinated in a meridional fashion using cis pyridyl, trans azomethine nitrogen and cis enolate oxygen atoms positioned very nearly perpendicular to each other. EPR spectra in DMF solutions at 77 K show hyperfine sextets and in some of the complexes the low intensity forbidden lines lying between each of the two hyperfine lines are also observed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four manganese(II) complexes Mn2(paa)2(N3)4 (1), [Mn(paa)2(NCS)2] 3/2H2O (2), Mn(papea)2(NCS)2 (3), [Mn(dpka)2(NCS)2] 1/2H2O(4) of three neutral N,N donor bidentate Schiff bases were synthesized and physico- chemically characterized by means of partial elemental analyses, electronic, infrared and EPR spectral studies. Compounds 3 and 4 were obtained as single crystals suitable for X-ray diffraction. Compound 4 recrystallized as Mn(dpka)2(NCS)2. Both the compounds crystallized in the monoclinic space groups P21 for 3 and C2/c for 4. Manganese(II) is found to be in a distorted octahedral geometry in both the monomeric complexes with thiocyanate anion as a terminal ligand coordinating through the nitrogen atom. EPR spectra in DMF solutions at 77 K show hyperfine sextets with low intensity forbidden lines lying between each of the two main hyperfine lines and the zero field splitting parameters (D and E) were calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Th(BrO3)3·H2O single crystals were grown from its aqueous solution at room temperature. Single crystal XRD, Raman and FTIR techniques were used to investigate the crystal structure. The crystal structure was solved by Patterson method. The as grown crystals are in monoclinic system with space group P21/c. The unit cell parameters are a = 12.8555(18) Å, b = 7.8970(11) Å, c = 9.0716(10) Å,  = 90°,  = 131.568° and  = 90° and unit cell volume is 689.1(2) Å3. Z = 8, R factor is 5.9. The Raman and FTIR studies indicate the lowering of symmetry of bromate anion from C3V to C1. Hydrogen bonds with varying strengths are present in the crystal. The centrosymmetric space group P21/c of the crystal is confirmed by the non-coincidence of majority of Raman and IR bands