7 resultados para Wheat bran

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The beta-glucosidase enzyme purified from the marine fungus, Aspergillus sydowii BTMFS 55 showed a good yield of enzyme production under solid state fermentation. The statistical optimization of the media components revealed that moisture content, concentration of peptone and inoculum are the major parameters which supported the maximal enzyme production. The purified enzyme showed low pH activity and stability, glucose tolerance and activation by ethanol. It could produce ethanol from wheat bran and rice straw by simultaneous saccharification and fermentation with yeast.The glucosidase purified from Aspergillus sydowii BTMFS 55 shows great potential for several biotechnological applications such as the production of bio-ethanol from agricultural biomass and improvement in the aromatic character of wines and fruit juices through the hydrolysis of flavour glucosidic precursors. There is immense scope for the application of this marine fungus in the biofuel production besides in other industries provided further studies are pursued in exploiting this enzyme and the organism particularly scale up studies with respect to application. There is also ample scope for cloning of the gene encoding beta-glucosidase in domesticated hosts such as Pichia pastoris or S. cerevisiae that can produce ethanol directly from cellulosic biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis an attempt is made to explore the potential of marine fungi for the production of chitinolytic enzymes and to recognize the ability to hydrolyse native chitin through submerged as well as solid substrate fermentation culture conditions, using wheat bran and shellfish processing waste such as ‘prawn waste’ as solid substrates. Attempt was made to isolate a potential chitinase producing fungus from marine environment and to develop an ideal bioprocess for the production ofchitolytic enzymes.Present study indicate scope for utilization of B. bassiana for industrial production of chitinase using prawn waste as solid substrate employing solid substrate fermentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacillus subtilis CBTK 106, isolated from banana wastes, produced high titres of a-amylase when banana fruit stalk was used as substrate in a solid-state fermentation system. The e¤ects of initial moisture content, particle size, cooking time and temperature, pH, incubation temperature, additional nutrients, inoculum size and incubation period on the production of a- amylase were characterised. A maximum yield of 5 345 000 U mg~1 min~1 was recorded when pretreated banana fruit stalk (autoclaved at 121 ¡C for 60 min) was used as substrate with 70% initial moisture content, 400 lm particle size, an initial pH of 7.0, a temperature of 35 ¡C, and additional nutrients (ammonium sulphate/sodium nitrate at 1.0%, beef extract/peptone at 0.5%, glucose/sucrose/starch/maltose at 0.1% and potassium chloride/sodium chloride at 1.0%) in the medium, with an inoculum-to-substrate ratio of 10% (v/w) for 24 h. The enzyme yield was 2.65-fold higher with banana fruit stalk medium compared to wheat bran

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polystyrene beads, impregnated with mineral salts/glutamine medium as inert support, were used to produce L-glutaminase from Vibrio costicola by solid-state fermentation. Maximum enzyme yield, 88 U/g substrate, was after 36 h. Glucose at 10 g/kg enhanced the enzyme yield by 66%. The support system allowed glutaminase to be recovered with higher specific activity and lower viscosity than when a wheat-bran system was used

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A potential fungal strain producing extracellular β-glucosidase enzyme was isolated from sea water and identified as ^ëéÉêJ Öáääìë=ëóÇçïáá BTMFS 55 by a molecular approach based on 28S rDNA sequence homology which showed 93% identity with already reported sequences of ^ëéÉêÖáääìë=ëóÇçïáá in the GenBank. A sequential optimization strategy was used to enhance the production of β-glucosidase under solid state fermentation (SSF) with wheat bran (WB) as the growth medium. The two-level Plackett-Burman (PB) design was implemented to screen medium components that influence β-glucosidase production and among the 11 variables, moisture content, inoculums, and peptone were identified as the most significant factors for β-glucosidase production. The enzyme was purified by (NH4)2SO4 precipitation followed by ion exchange chromatography on DEAE sepharose. The enzyme was a monomeric protein with a molecular weight of ~95 kDa as determined by SDS-PAGE. It was optimally active at pH 5.0 and 50°C. It showed high affinity towards éNPG and enzyme has a hã and sã~ñ of 0.67 mM and 83.3 U/mL, respectively. The enzyme was tolerant to glucose inhibition with a há of 17 mM. Low concentration of alcohols (10%), especially ethanol, could activate the enzyme. A considerable level of ethanol could produce from wheat bran and rice straw after 48 and 24 h, respectively, with the help of p~ÅÅÜ~êçãóÅÉë=ÅÉêÉîáëá~É in presence of cellulase and the purified β-glucosidase of ^ëéÉêÖáääìë=ëóÇçïáá BTMFS 55.