4 resultados para Visible photocatalyst

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2,4,6-triphenylthiapyrylium ion has been obtained imprisoned inside the supercages of the tridirectional, large pore zeolites Y and beta via ship-in-a-bottle synthesis from chalcone and acetophenone in the presence of hydrogen sulfide. The resulting solids are efficient and robust photocatalysts that are able to degrade phenol and aniline in water with a higher efficiency than the P-25 TiO2 standard. Preliminary tests have shown that these encapsulated dye materials are also efficient photocatalysts for the oxidative degradation of malodorous sulfurcontaining molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the structure of luminescence spectrum in the visible region in nano-ZnO in colloidal and thin film forms under weak confinement regime by modeling the transition from excited state energy levels of excitons to their ground state. Measurements on nanocrystallites indicate the presence of luminescence due to excitonic emissions when excited with 255 nm. The relevant energy levels showing the transitions corresponding to the observed peaks in the emission spectrum of ZnO of particle size 18 nm are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibrational overtone spectra of styrene (liquid) and polystyrene (solid), studied by the laser-induced thermal lens (for ΔV=6) and the conventional near infrared absorption (for ΔV=3–5) techniques, are reported. For polystyrene, the overtone energy-bond length correlation predicts that the aryl CH bonds are ∼0.0005 Å longer than that in benzene, while no such conclusions could be drawn on styrene. Thesp 3 CH overtones in polystyrene are observed on the low energy side of the aryl CH overtones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.