5 resultados para Visible light communication

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Materials exhibiting transparency and electrical conductivity simultaneously, transparent conductors, Transparent conducting oxides (TCOs), which have high transparency through the visible spectrum and high electrical conductivity are already being used in numerous applications. Low-emission windows that allow visible light through while reflecting the infrared, this keeps the heat out in summer, or the heat in, in winter. A thin conducting layer on or in between the glass panes achieves this. Low-emission windows use mostly F-doped SnO2. Most of these TCO’s are n type semiconductors and are utilized in a variety of commercial applications, such as flat-panel displays, photovoltaic devices, and electrochromic windows, in which they serve as transparent electrodes. Novel functions may be integrated into the materials since oxides have a variety of elements and crystal structures, providing great potential for realizing a diverse range of active functions. However, the application of TCOs has been restricted to transparent electrodes, notwithstanding the fact that TCOs are n-type semiconductors. The primary reason is the lack of p-type TCOs, because many of the active functions in semiconductors originate from the nature of the pn-junction. In 1997, H. Kawazoe et al.[2] reported CuAlO2 thin films as a first p-type TCO along with a chemical design concept for the exploration of other p-type TCOs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work aims to prepare visible light responsive anion doped titania via sol-gel precipitation method.The prepared catalysts were characterized by various techniques.The photocatalytic abilities of the prepared catalysts were measured by the degradation of dyes,pesticides,hydrogen production through water splitting reaction and antibacterial study.We also compared the activities of prepared catalysts with pure titania prepared in the laboratory and one of the commercial anatase titania samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Study overviews the basics of TiO2with respect to its structure, properties and applications. A brief account of its structural, electronic and optical properties is provided. Various emerging technological applications utilising TiO2 is also discussed.Till now, exceptionally large number of fundamental studies and application-oriented research and developments has been carried out by many researchers worldwide in TiO2 with its low-dimensional nanomaterial form due to its various novel properties. These nanostructured materials have shown many favourable properties for potential applications, including pollutant photocatalytic decomposition, photovoltaic cells, sensors and so on. This thesis aims to make an in-depth investigation on different linear and nonlinear optical and structural characteristics of different phases of TiO2. Correspondingly, extensive challenges to synthesise different high quality TiO2 nanostructure derivatives such as nanotubes, nanospheres, nanoflowers etc. are continuing. Here, different nanostructures of anatase TiO2 were synthesised and analysed. Morphologically different nanostructures were found to have different impact on their physical and electronic properties such as varied surface area, dissimilar quantum confinement and hence diverged suitability for different applications. In view of the advantages of TiO2, it can act as an excellent matrix for nanoparticle composite films. These composite films may lead to several advantageous functional optical characteristics. Detailed investigations of these kinds of nanocomposites were also performed, only to find that these nanocomposites showed higher adeptness than their parent material. Fine tuning of these parameters helps researchers to achieve high proficiency in their respective applications. These innumerable opportunities aims to encompass the new progress in studies related to TiO2 for an efficient utilization in photo-catalytic or photo-voltaic applications under visible light, accentuate the future trends of TiO2-research in the environment as well as energy related fields serving promising applications benefitting the mankind. The last section of the thesis discusses the applicability of analysed nanomaterials for dye sensitised solar cells followed by future suggestions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.