5 resultados para Visibility distance.
em Cochin University of Science
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
The D-eigenvalues of a graph G are the eigenvalues of its distance matrix D, and the D-energy ED(G) is the sum of the absolute values of its D-eigenvalues. Two graphs are said to be D-equienergetic if they have the same D-energy. In this note we obtain bounds for the distance spectral radius and D-energy of graphs of diameter 2. Pairs of equiregular D-equienergetic graphs of diameter 2, on p = 3t + 1 vertices are also constructed.
Resumo:
A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.
Resumo:
A graph G is strongly distance-balanced if for every edge uv of G and every i 0 the number of vertices x with d.x; u/ D d.x; v/ 1 D i equals the number of vertices y with d.y; v/ D d.y; u/ 1 D i. It is proved that the strong product of graphs is strongly distance-balanced if and only if both factors are strongly distance-balanced. It is also proved that connected components of the direct product of two bipartite graphs are strongly distancebalanced if and only if both factors are strongly distance-balanced. Additionally, a new characterization of distance-balanced graphs and an algorithm of time complexity O.mn/ for their recognition, wheremis the number of edges and n the number of vertices of the graph in question, are given
Resumo:
Given a graph G and a set X ⊆ V(G), the relative Wiener index of X in G is defined as WX (G) = {u,v}∈X 2 dG(u, v) . The graphs G (of even order) in which for every partition V(G) = V1 +V2 of the vertex set V(G) such that |V1| = |V2| we haveWV1 (G) = WV2 (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs G in which all vertices u ∈ V(G) have the same total distance DG(u) = v∈V(G) dG(u, v). Some related problems are posed along the way, and the so-called Wiener game is introduced.