10 resultados para Vibrations

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is mainly concentrated on setting up a NIR tunable diode laser absorption (TDLA) spectrometer for high-resolution molecular spectroscopic studies. For successfully recording the high-resolution tunable diode laser spectrum, various experimental considerations are to be taken into account like the setup should be free from mechanical vibrations, sample should be kept at a low pressure, laser should be in a single mode operation etc. The present experimental set up considers all these factors. It is to be mentioned here that the setting up of a high resolution NIR TDLA spectrometer is a novel experiment requiring much effort and patience. The analysis of near infrared (NIR) vibrational overtone spectra of some substituted benzene compounds using local mode model forms another part of the present work. An attempt is made to record the pulsed laser induced fluorescence/Raman spectra of some organic compounds. A Q-switched Nd:YAG laser is used as the excitation source. A TRIAX monochromator and CCD detector is used for the spectral recording. The observed fluorescence emission for carbon disulphide is centered at 680 nm; this is assigned as due to the n, p* transition. Aniline also shows a broad fluorescence emission centered at 725 nm, which is due to the p,p* transition. The pulsed laser Raman spectra of some organic compounds are also recorded using the same experimental setup. The calibration of the set up is done using the laser Raman spectra of carbon tetrachloride and carbon disulphide. The observed laser Raman spectra for aniline, o-chloroaniline and m-chlorotoluene show peaks characteristics of the aromatic ring in common and the characteristics peaks due to the substitutuent groups. Some new peaks corresponding to low-lying vibrations of these molecules are also assigned

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of the thesis is essentially to evolve and apply certain computational procedures to evaluate the structure and properties of some simple polyatomic molecules making use of spectroscopic data available from the literature. It must be said that though there is dwindling interest in recent times in such analyses, there exists tremendous scope and utility for attempting such calculations as the precision and reliability of'experimental techniques in spectroscopy have increased vastly due to enormous sophistication of the instruments used for these measurements. In the present thesis an attempt is made to extract maximum amount of information regarding the geometrical structure and interatmic forces of simple molecules from the experimental data on microwave and infrared spectra of these molecules

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and infrared spectra of Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7 are reported. The observed bands are assigned in terms of vibrations of NbO6 octahedra and PO4 tetrahedra in the first two compounds and in terms of NbO6 octahedra and P2O7 4− anion in the third compound. The NbO6 octahedra in all the title compounds are found to be corner-shared and distorted. The higher wavenumber values of the ν1 (NbO6) mode and other stretching modes indicate that the NbO6 octahedra in them are distorted in the order TlNbOP2O7 > Tl2NbO2PO4 > Tl3NaNb4O9(PO4)2. The splitting of the ν3 (PO4) mode indicates that PO4 tetrahedra is distorted more in Tl2NbO2PO4 than in Tl3NaNb4O9(PO4)2. The symmetry of P2O7 4− anion in TlNbOP2O7 is lowered. Bands indicate that the P–O–P bridge in the above compound has a bent P–O–P bridge configuration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO4 3 tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO4 3 polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO4 3 polyanionin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman and FTIR spectra of [C(NH2)3]2M(SO4)2 ·6H2O (withM= Co, Fe, Ni) were recorded and analysed. The observed spectral bands are assigned in terms of vibrations of guanidinium ions, sulphate groups and water molecules. The analysis shows that the sulphate tetrahedra are distorted from their free state symmetry Td to C1. This is attributed to the presence of hydrogen bonds from water molecules. The order of distortion of the metal oxygen octahedra influenced the distortion of the sulphate tetrahedra. The appearance of 1– 3 modes of water molecules above 3300 cm−1 indicates the presence of weak hydrogen bonds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared and polarized Raman spectra of Cu(HSeO3) 2 - H20 single crystal have been recorded and analysed. The appearance of non-degenerate Se-OH stretching vibrations in the ~x: and ~y: polarizations of Raman spectra indicate distortion of the HSeO~- ion in the Cu(HSeO3)2 - H20 crystal. The low wavenumber values obtained for the symmetric and asymmetric stretching vibrations of the HSeO 3 ion are consistent with the strong hydrogen bonding and the influence of Jahn-Teller distortion as predicted in X-ray diffraction data. The shifting of the stretching and bending vibrations of the hydroxyl groups and water molecules from the free state values also confirms the strong hydrogen bonding in this crystal. Broad bands observed for both stretching and bending regions become sharp in the Raman spectrum recorded at 77 K. A doublet appears for the Se-OH stretching mode at this temperature indicating the settling of protons in an ordered position and the absence of intrabond proton tunnelling

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 · 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3 − and H2O vibrations. Additional bands obtained in the region of 3 and 1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of 3 modes, since the BrO3 − ion occupies a site of lower symmetry. The appearance 1 mode of BrO3 − anion at a lower wavenumber (771 cm−1) is attributed to the attachment of hydrogen to the BrO3 − anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 · 3H2O structure is confirmed. The lifting of degeneracy of 4 mode indicates that the symmetry of BrO3 − anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77–523 K for various temperatures. A small structural rearrangement takes place in BrO3 − ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3 − ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.