4 resultados para Variational method
em Cochin University of Science
Resumo:
This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
The cutoff wavenumbers of higher order modes in circular eccentric guides are computed with the variational analysis combined with a conformal mapping. A conformal mapping is applied to the variational formulation, and the variational equation is solved by the finite-element method. Numerical results for TE and TM cutoff wavenumbers are presented for different distances between the centers and ratio of the radii. Comparisons with numerical results found in the literature validate the presented method
Resumo:
The study of stability problems is relevant to the study of structure of a physical system. It 1S particularly important when it is not possible to probe into its interior and obtain information on its structure by a direct method. The thesis states about stability theory that has become of dominant importance in the study of dynamical systems. and has many applications in basic fields like meteorology, oceanography, astrophysics and geophysics- to mention few of them. The definition of stability was found useful 1n many situations, but inadequate in many others so that a host of other important concepts have been introduced in past many years which are more or less related to the first definition and to the common sense meaning of stability. In recent years the theoretical developments in the studies of instabilities and turbulence have been as profound as the developments in experimental methods. The study here Points to a new direction for stability studies based on Lagrangian formulation instead of the Hamiltonian formulation used by other authors.