4 resultados para Variability Modeling

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation, the impacts of the variability of the climatic parameters on the yields of major crops grown in the State are analyzed. In particular, the effects of rainfall variability on the water balances of the different regions in the State have been studied. Through this analysis the drought climatology of the region has been studied along with an overview of the climatic shifts involved in individual years. The relationship between weather parameters and crop yields over the State has been analyzed with case studies of two crops- coconut and paddy. Crop-weather models for forecasting coconut and paddy yields have been developed, which could be used for planning purposes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aerosols in the atmosphere play major role in the radiation balance of the Earthatmosphere system. Direct and indirect impact of aerosols on the weather and climate still remains as a topic to be investigated in detail. The effect of aerosols on the radiation budget and thereby circulation pattern is important and requires further study. A detailed analysis of the aerosol properties, their variability and meteorological processes that affect the aerosol properties and distribution over the Indian region is performed in the thesis. The doctoral thesis entitled “Characteristics of aerosols over the Indian region and their variability associated with atmospheric conditions” contains 7 chapters. This thesis presents results on the analysis on the distribution (spatial and temporal) and characteristics of the aerosols over the Indian region and adjoining seas. Regional and stationwise data were analysed and methods such as modeling and statistical analysis are implemented to understand the aerosol properties, classification and transportation. Chapter-1 presents a brief introduction on the aerosols, their measurement techniques, impact of aerosols on the atmospheric radiation budget, climatic and geographic features of the study area and the literature review on the previous studies. It provides a basic understanding in the field of study and objective of the thesis. Definition of the aerosols, their sources/sinks and classification of the particles according to optical and microphysical properties are described. Different measurement techniques such as sampling and remote sensing methods are explained in detail. Physical parameters used to describe aerosol properties and effect of aerosols on the radiation distribution are also discussed. The chapter also explains the objectives of the thesis and description of climatic features of the study area.