27 resultados para Vacuum pumps.

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vacuum-ultraviolet (VUV) irradiation (kexc: 172 ± 12 nm) of polystyrene films in the presence of oxygen produced not only oxidatively functionalized surfaces, but generated also morphological changes. Whereas OH- and C=O-functionalized surfaces might be used for e.g. secondary functionalization, enhanced aggregation or printing, processes leading to morphological changes open new possibilities of microstructurization. Series of experiments made under different experimental conditions brought evidence of two different reaction pathways: introduction of OH- and C=O-groups at the polystyrene pathways is mainly due to the reaction of reactive oxygen species (hydroxyl radicals, atomic oxygen, ozone) produced in the gas phase between the VUV-radiation source and the substrate. However, oxidative fragmentation leading to morphological changes, oxidation products of low molecular weight and eventually to mineralization of the organic substrate is initiated by electronic excitation of the polymer leading to C–C-bond homolysis and to a complex oxidation manifold after trapping of the C-centred radicals by molecular oxygen. The pathways of oxidative functionalization or fragmentation could be differentiated by FTIR-ATR analysis of irradiated polystyrene surfaces before and after washing with acetonitrile and microscopic fluorescence analysis of the surfaces secondarily functionalized with the N,N,N-tridodecyl-triaza-triangulenium (TATA) cation. Ozonization of the polystyrene leads to oxidative functionalization of the polymer surface but cannot initiate the fragmentation of the polymer backbone. Oxidative fragmentation is initiated by electronic excitation of the polymer (contact-mode AFM analysis), and evidence of the generation of intermediate C-centred radicals is given e.g. by experiments in the absence of oxygen leading to cross-linking (solubility effects, optical microscopy, friction-mode AFM) and disproportionation (fluorescence).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural, electronic, and optical properties of amorphous and transparent zinc tin oxide films deposited on glass substrates by pulsed laser deposition (PLD) were examined for two chemical compositions of Zn:Sn=1:1 and 2:1 as a function of oxygen partial pressure PO2 used for the film deposition and annealing temperature. Different from a previous report on sputter-deposited films Chiang et al., Appl. Phys. Lett. 86, 013503 2005 , the PLD-deposited films crystallized at a lower temperature 450 °C to give crystalline ZnO and SnO2 phases. The optical band gaps Tauc gaps were 2.80−2.85 eV and almost independent of oxygen PO2 , which are smaller than those of the corresponding crystals 3.35−3.89 eV . Films deposited at low PO2 showed significant subgap absorptions, which were reduced by postthermal annealing. Hall mobility showed steep increases when carrier concentration exceeded threshold values and the threshold value depended on the film chemical composition. The films deposited at low PO2 2 Pa had low carrier concentrations. It is thought that the low PO2 produced high-density oxygen deficiencies and generated electrons, but these electrons were trapped in localized states, which would be observed as the subgap absorptions. Similar effects were observed for 600 °C crystallized films and their resistivities were increased by formation of subgap states due to the reducing high-temperature condition. High carrier concentrations and large mobilities were obtained in an intermediate PO2 region for the as-deposited films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical emission spectroscopic studies were carried out on the plasma produced by ablation of zinc oxide target using the third harmonic 355 nm of Q-switched Nd:YAG laser, in vacuum and at three different ambient gas oxygen pressures. The spatial variations of electron density Ne and electron temperature Te were studied up to a distance of 20 mm from the target surface. The kinematics of the emitted particles and the expansion of the plume edge are discussed. The optimum conditions favorable for the formation of high quality zinc oxide thin films are thereby suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(o-toluidine) (PoT) and poly(o-toluidine co aniline) were prepared by using ammonium persulfate initiator, in the presence of 1M HCI. It was dried under different conditions: room temperature drying (48 h), oven drying (at 50°C for 12 h), or vacuum drying (under vacuum, at room temperature for 16 h). The dielectric properties, such as dielectric loss, conductivity, dielectric constant, dielectric heating coefficient, loss tangent, etc., were studied at microwave frequencies. A cavity perturbation technique was used for the study. The dielectric properties were found to be related to the frequency and drying conditions. Also, the copolymer showed better properties compared to PoT alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Polyaniline was synthesized by using ammonium persulfate initiator in the presence of 1M HC1. It was dried under different drying conditions like room temperature drying (for 48 h), oven drying (at 50-60°C for 8 h under a vacuum), and vacuum drying (at room temperature for 16 h). The conductivities of these samples were measured at microwave frequencies. These samples were also pelletized and the measurements were repeated. The cavity perturbation technique was used for the study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of plasma plume, formed by the laser-blow-off of multicomponent LiF-C thin film under various ambient pressures ranging from high vacuum to argon pressure of 3 Torr, has been studied using fast imaging technique. In vacuum, the plume has ellipsoidal shape. With the increase in the ambient pressure, sharp plume boundary is developed showing a focusing-like confinement in the lateral space behavior in the front end, which persists for long times. At higher ambient pressure (> 10−1 Torr ), structures are developed in the plasma plume due to hydrodynamic instability/turbulences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A silver target kept under partial vacuum conditions was irradiated with focused nanosecond pulses at 1:06 mm from a Nd:YAG laser. The electron emission monitored with a Langmuir probe shows a clear twin-peak distribution. The first peak which is very sharp has only a small delay and it indicates prompt electron emission with energy as much as 60 5 eV. Also the prompt electron emission shows a temporal profile with a width that is same as that for the laser pulse whereas the second peak is broader, covers several microseconds, and represents the low-energy electrons (2 0:5 eV) associated with the laser-induced silver plasma as revealed by time-of-flight measurements. It has been found that prompt electrons ejected from the target collisionally excite and ionize ambient gas molecules. Clearly resolved rotational structure is observed in the emission spectra of ambient nitrogen molecules. Combined with time-resolved spectroscopy, the prompt electrons can be used as excitation sources for various collisional excitation–relaxation experiments. The electron density corresponding to the first peak is estimated to be of the order of 1017 cm?--3 and it is found that the density increases as a function of distance away from the target. Dependence of probe current on laser intensity shows plasma shielding at high laser intensities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser-induced plasma generated from a silver target under partial vacuum conditions using the fundamental output of nanosecond duration from a pulsed Nd:yttrium aluminum garnet laser is studied using a Langmuir probe. The time of flight measurements show a clear twin peak distribution in the temporal profile of electron emission. The first peak has almost the same duration as the laser pulse while the second lasts for several microseconds. The prompt electrons are energetic enough ('60 eV) to ionize the ambient gas molecules or atoms. The use of prompt electron pulses as sources for electron impact excitation is demonstrated by taking nitrogen, carbon dioxide, and argon as ambient gases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser radiation at 1.06 µm from a pulsed Nd:YAG laser was focused onto a multielement YBa2Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.