9 resultados para VELOCARDIOFACIAL SYNDROME

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaculture farms, particularly in Southeast Asia are facing severe crisis due to increasing incidences of White Spot Syndrome Virus (WSSV). Actinomycetes have provided many important bioactive compounds of high prophylactic and therapeutic value and are continually being screened for new compounds. In this communication, the results of a study made to determine the effectiveness of marine actinomycetes against the white spot disease in penaeid shrimps are presented. Twenty-five isolates of actinomycetes were tested for their ability to reduce infection due to WSSV among cultured shrimps. When these actinomycetes were made available as feed additives to the post-larvae of the black tiger shrimp Penaeus monodon for two weeks and challenged with WSSV, the post challenge survival showed variations from 11 to 83%. However, six isolates have shown to be the most potential candidates for further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Centre for Aquatic Animal Health, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is the deadliest virus among crustaceans ever discovered having several unique and novel features. Recent developments in genomics and proteomics could elucidate the molecular process involved in the WSSV infection and the host pathogen interaction to some extent. Until now no fool proof treatment or prophylactic measure has been made available to control WSSV out breaks in culture system. Even though there are technologies like application of immunostimulants, vaccines, RNAi and several antiviral natural products none of them has been taken to the level of clinical trials. However, there are several management options such as application of bioremediation technologies to maintain the required environmental quality, maintenance of zero water exchange systems coupled with application of probiotics and vaccines which on adoption shall pave way for successful crops amidst the rapid spread of the virus. In this context the present work was undertaken to develop a drug from mangrove plants for protecting shrimp from WSSV.Mangroves belong to those ecosystems that are presently under the threat of destruction, diversion and blatant attack in the name of so called ‘developmental activities’. Mangrove plants have unique ecological features as it serves as an ecotone between marine and terrestrial ecosystem and hence possess diversity of metabolites with diverse activities. This prompted them being used as remedial measures for several ailments for ages. Among the mangrove plants Ceriops tagal, belonging to the family Rhizophororaceae was in attention for many years for isolating new metabolites such as triterpenes, phenolic compounds, etc. Even though there were attempts to study various plant extracts to develop anti-viral preparations their activity against WSSV was not investigated as yet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A yearlong (September 2009–August 2010) study was undertaken to find out possible reasons for occasional occurrence of White Spot Syndrome Virus (WSSV) outbreak in the traditional prawn farms adjoining Cochin backwaters. Physicochemical and bacteriological parameters of water and sediment from feeder canal and four shrimp farms were monitored on a fortnightly basis. The physicochemical parameters showed variation during the two production cycles and between the farms studied. Dissolved oxygen (DO) content of water fromfeeder canal showed low oxygen levels (as low as 0.8mg/L) throughout the study period. There was no disease outbreak in the perennial ponds. Poor water exchange coupled with nutrient loading from adjacent houses resulted in phytoplankton bloom in shallow seasonal ponds which led to hypoxic conditions in early morning and supersaturation of DO in the afternoon besides considerably high alkaline pH. Ammonia levels were found to be very high in these ponds.WSSV outbreak was encountered twice during the study leading to mass mortalities in the seasonal ponds. The hypoxia and high ammonia content in water and abrupt fluctuations in temperature, salinity and pH might lead to considerable stress in the shrimps triggeringWSSV infection in these traditional ponds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1 ), tryptose phosphate broth (2.95 g l 1), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 lgml 1 chloramphenicol, 100 lgml 1 streptomycin and 100 IU ml 1 penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-20-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24 h. Susceptibility of the cells to WSSV was confirmed by immunofluoresence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT50/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC50. The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shrimp cell lines are yet to be reported and this restricts the prospects of investigating the associated viral pathogens, especially white spot syndrome virus (WSSV). In this context, development of primary cell cultures from lymphoid organs was standardized. Poly-l-lysine-coated culture vessels enhanced growth of lymphoid cells, while the application of vertebrate growth factors did not, except insulin-like growth factor-1 (IGF-1). Susceptibility of the lymphoid cells to WSSV was confirmed by immunofluoresence assay using monoclonal antibody against the 28 kDa envelope protein of WSSV. Expression of viral and immunerelated genes in WSSV-infected lymphoid cultures could be demonstrated by RT-PCR. This emphasizes the utility of lymphoid primary cell culture as a platform for research in virus–cell interaction, virus morphogenesis, up and downregulation of shrimp immune-related genes, and also for the discovery of novel drugs to combat WSSV in shrimp culture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV), the most contagious pathogen of cultured shrimp, causes mass mortality, leading to huge economic loss to the shrimp industry. The lack of effective therapeutic or prophylactic measures has aggravated the situation, necessitating the development of antiviral agents. With this objective, the antiviral activity in the aqueous extract of a mangrove plant Ceriops tagal in Penaeus monodon was evaluated. The Ceriops tagal aqueous extract (CTAE) was non-toxic to shrimps at 50 mg/ml when injected intramuscularly at a dosage of 10 lL/animal (0.5 mg/animal) and showed a protective effect against WSSV at 30 mg/ml when mixed with WSSV suspension at a 1:1 ratio. When the extract was administered along with the diet and the animals were challenged orally, there was a dose-dependent increase in survival, culminating in 100 % survival at a concentration of 500 mg/kg body weight/day. Neither hypertrophied nuclei nor the viral envelope protein VP28 could be demonstrated in surviving shrimps using histology and indirect immunofluorescence histochemistry (IIFH), respectively. To elucidate the mode of action, the temporal expression of WSSV genes and shrimp immune genes, including antimicrobial peptides, was attempted. None of the viral genes were found to be expressed in shrimps that were fed with the extract and challenged or in those that were administered CTAE-exposed WSSV. The overall results suggest that the aqueous extract from C. tagal can protect P. monodon from white spot syndrome virus infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fenneropenaeus indicus could be protected from white spot disease (WSD) caused by white spot syndrome virus (WSSV) using a formalin-inactivated viral preparation (IVP) derived from WSSV-infected shrimp tissue. The lowest test quantity of lyophilized IVP coated onto feed at 0.025 g–1 (dry weight) and administered at a rate of 0.035 g feed g–1 body weight d–1 for 7 consecutive days was sufficient to provide protection from WSD for a short period (10 d after cessation of IVP administration). Shrimp that survived challenges on the 5th and 10th days after cessation of IVP administration survived repeated challenges although they were sometimes positive for the presence of WSSV by a polymerase chain reaction (PCR) assay specific for WSSV. These results suggest that F. indicus can be protected from WSD by simple oral administration of IVP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influence of acute salinity stress on the immunological and physiological response of Penaeus monodon to white spot syndrome virus (WSSV) infection was analysed. P. monodon maintained at 15‰ were subjected to acute salinity changes to 0‰ and 35‰ in 7 h and then challenged orally with WSSV. Immune variables viz., total haemocyte count, phenol oxidase activity (PO), nitroblue tetrazolium salt (NBT) reduction, alkaline phosphatase activity (ALP), acid phosphatase activity (ACP) and metabolic variables viz., total protein, total carbohydrates, total free amino acids (TFAA), total lipids, glucose and cholesterol were determined soon after salinity change and on post challenge days 2 (PCD2) and 5 (PCD5). Acute salinity change induced an increase in metabolic variables in shrimps at 35‰ except TFAA. Immune variables reduced significantly (Pb0.05) in shrimps subjected to salinity stress with the exception of ALP and PO at 35‰ and the reduction was found to be more at 0‰. Better performance of metabolic and immune variables in general could be observed in shrimps maintained at 15‰ that showed significantly higher post challenge survival following infection compared to those under salinity stress. Stress was found to be higher in shrimps subjected to salinity change to lower level (0‰) than to higher level (35‰) as being evidenced by the better immune response and survival at 35‰. THC (Pb0.001), ALP (Pb0.01) and PO (Pb0.05) that together explained a greater percentage of variability in survival rate, could be proposed as the most potential health indicators in shrimp haemolymph. It can be concluded from the study that acute salinity stress induces alterations in the haemolymph metabolic and immune variables of P. monodon affecting the immunocompetence and increasing susceptibility to WSSV, particularly at low salinity stress conditions