16 resultados para User-Machine System

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is a Named Entity Based Question Answering System for Malayalam Language. Although a vast amount of information is available today in digital form, no effective information access mechanism exists to provide humans with convenient information access. Information Retrieval and Question Answering systems are the two mechanisms available now for information access. Information systems typically return a long list of documents in response to a user’s query which are to be skimmed by the user to determine whether they contain an answer. But a Question Answering System allows the user to state his/her information need as a natural language question and receives most appropriate answer in a word or a sentence or a paragraph. This system is based on Named Entity Tagging and Question Classification. Document tagging extracts useful information from the documents which will be used in finding the answer to the question. Question Classification extracts useful information from the question to determine the type of the question and the way in which the question is to be answered. Various Machine Learning methods are used to tag the documents. Rule-Based Approach is used for Question Classification. Malayalam belongs to the Dravidian family of languages and is one of the four major languages of this family. It is one of the 22 Scheduled Languages of India with official language status in the state of Kerala. It is spoken by 40 million people. Malayalam is a morphologically rich agglutinative language and relatively of free word order. Also Malayalam has a productive morphology that allows the creation of complex words which are often highly ambiguous. Document tagging tools such as Parts-of-Speech Tagger, Phrase Chunker, Named Entity Tagger, and Compound Word Splitter are developed as a part of this research work. No such tools were available for Malayalam language. Finite State Transducer, High Order Conditional Random Field, Artificial Immunity System Principles, and Support Vector Machines are the techniques used for the design of these document preprocessing tools. This research work describes how the Named Entity is used to represent the documents. Single sentence questions are used to test the system. Overall Precision and Recall obtained are 88.5% and 85.9% respectively. This work can be extended in several directions. The coverage of non-factoid questions can be increased and also it can be extended to include open domain applications. Reference Resolution and Word Sense Disambiguation techniques are suggested as the future enhancements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the development of bioreactors for nitrifying water in closed system hatcheries of penaeid and non-penaeid prawns. This work is an attempt in this direction to cater to the needs of aquaculture industry for treatment and remediation of ammonia and nitrate in penaeid and non-penaeid hatcheries, by developing nitrifying bacteria allochthonous to the particular environment under consideration, and immobilizing them on an appropriately designed support materials configured as reactors. Ammonia toxicity is the major limiting factors in penaeid and non-penaeid hatchery systems causing lethal and sublethal effects on larvae depending on the pH values. Pressing need of the aquaculture industry to have a user friendly and economically viable technology for the removal of ammonia, which can be easily integrated to the existing hatchery designs without any major changes or modifications. Only option available now is to have biological filters through which water can be circulated for the oxidation of ammonia to nitrate through nitrite by a group of chemolithotrophs known as nitrifying bacteria. Two types of bioreactors have been designed and developed. The first category named as in situ stringed bed suspended bioreactor(SBSBR) was designed for use in the larval rearing tanks to remove ammonia and nitrite during larval rearing on a continuous basis, and the other to be used for nitrifying freshly collected seawater and spent water named as ex situ packed bed bioreactior(PBBR). On employing the two reactors together , both penaeid and non-penaeid larval rearing systems can be made a closed recirculating system at least for a season. A survey of literature revealed that the in situ stringed bed suspended reactor developed here is unique in its design, fabrication and mode of application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is aimed at building an adaptable frame-based system for processing Dravidian languages. There are about 17 languages in this family and they are spoken by the people of South India.Karaka relations are one of the most important features of Indian languages. They are the semabtuco-syntactic relations between verbs and other related constituents in a sentence. The karaka relations and surface case endings are analyzed for meaning extraction. This approach is comparable with the borad class of case based grammars.The efficiency of this approach is put into test in two applications. One is machine translation and the other is a natural language interface (NLI) for information retrieval from databases. The system mainly consists of a morphological analyzer, local word grouper, a parser for the source language and a sentence generator for the target language. This work make contributios like, it gives an elegant account of the relation between vibhakthi and karaka roles in Dravidian languages. This mapping is elegant and compact. The same basic thing also explains simple and complex sentence in these languages. This suggests that the solution is not just ad hoc but has a deeper underlying unity. This methodology could be extended to other free word order languages. Since the frame designed for meaning representation is general, they are adaptable to other languages coming in this group and to other applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work was developing a query processing system using software agents. Open Agent Architecture framework is used for system development. The system supports queries in both Hindi and Malayalam; two prominent regional languages of India. Natural language processing techniques are used for meaning extraction from the plain query and information from database is given back to the user in his native language. The system architecture is designed in a structured way that it can be adapted to other regional languages of India. . This system can be effectively used in application areas like e-governance, agriculture, rural health, education, national resource planning, disaster management, information kiosks etc where people from all walks of life are involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and development of a frame based approach for speech to sign language machine translation system in the domain of railways and banking. This work aims to utilize the capability of Artificial intelligence for the improvement of physically challenged, deaf-mute people. Our work concentrates on the sign language used by the deaf community of Indian subcontinent which is called Indian Sign Language (ISL). Input to the system is the clerk’s speech and the output of this system is a 3D virtual human character playing the signs for the uttered phrases. The system builds up 3D animation from pre-recorded motion capture data. Our work proposes to build a Malayalam to ISL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the emergence of multiple language support on the Internet, machine translation (MT) technologies are indispensable to the communication between speakers using different languages. Recent research works have started to explore tree-based machine translation systems with syntactical and morphological information. This work aims the development of Syntactic Based Machine Translation from English to Malayalam by adding different case information during translation. The system identifies general rules for various sentence patterns in English. These rules are generated using the Parts Of Speech (POS) tag information of the texts. Word Reordering based on the Syntax Tree is used to improve the translation quality of the system. The system used Bilingual English –Malayalam dictionary for translation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe the methodology and the structural design of a system that translates English into Malayalam using statistical models. A monolingual Malayalam corpus and a bilingual English/Malayalam corpus are the main resource in building this Statistical Machine Translator. Training strategy adopted has been enhanced by PoS tagging which helps to get rid of the insignificant alignments. Moreover, incorporating units like suffix separator and the stop word eliminator has proven to be effective in bringing about better training results. In the decoder, order conversion rules are applied to reduce the structural difference between the language pair. The quality of statistical outcome of the decoder is further improved by applying mending rules. Experiments conducted on a sample corpus have generated reasonably good Malayalam translations and the results are verified with F measure, BLEU and WER evaluation metrics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the implementation details of a child friendly, good quality, English text-to-speech (TTS) system that is phoneme-based, concatenative, easy to set up and use with little memory. Direct waveform concatenation and linear prediction coding (LPC) are used. Most existing TTS systems are unit-selection based, which use standard speech databases available in neutral adult voices.Here reduced memory is achieved by the concatenation of phonemes and by replacing phonetic wave files with their LPC coefficients. Linguistic analysis was used to reduce the algorithmic complexity instead of signal processing techniques. Sufficient degree of customization and generalization catering to the needs of the child user had been included through the provision for vocabulary and voice selection to suit the requisites of the child. Prosody had also been incorporated. This inexpensive TTS systemwas implemented inMATLAB, with the synthesis presented by means of a graphical user interface (GUI), thus making it child friendly. This can be used not only as an interesting language learning aid for the normal child but it also serves as a speech aid to the vocally disabled child. The quality of the synthesized speech was evaluated using the mean opinion score (MOS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics is an efficient technology with great possibilities in the area of security system development for official and commercial applications. The biometrics has recently become a significant part of any efficient person authentication solution. The advantage of using biometric traits is that they cannot be stolen, shared or even forgotten. The thesis addresses one of the emerging topics in Authentication System, viz., the implementation of Improved Biometric Authentication System using Multimodal Cue Integration, as the operator assisted identification turns out to be tedious, laborious and time consuming. In order to derive the best performance for the authentication system, an appropriate feature selection criteria has been evolved. It has been seen that the selection of too many features lead to the deterioration in the authentication performance and efficiency. In the work reported in this thesis, various judiciously chosen components of the biometric traits and their feature vectors are used for realizing the newly proposed Biometric Authentication System using Multimodal Cue Integration. The feature vectors so generated from the noisy biometric traits is compared with the feature vectors available in the knowledge base and the most matching pattern is identified for the purpose of user authentication. In an attempt to improve the success rate of the Feature Vector based authentication system, the proposed system has been augmented with the user dependent weighted fusion technique.