2 resultados para United nations interim commission on food and agriculture.
em Cochin University of Science
Resumo:
Food and feeding habits of fourteen demersal finfishes exploited off the Karnataka coast were studied to investigate trophic interactions within the marine food web. Index of Relative Importance (lRI),Ontogenetic, seasonal (pre-monsoon, monsoon and post-monsoon) variation in feeding and prey-predator relationship studies were conducted.The results of prey-predator trophic interaction studies identified four major trophic guilds based on the predators feeding similarity.Trophic guild I is 'copepod and detritus fceders'with an average group similarity of 61.4%. The second trophic guild, 'prawn and crab feeders'with an average similarity of 52.7%. 'Acetes feeders', the largest trophic guild with an average group similarity of 62.5%, composed of six demersal finfish species.The guild 'piscivores' is constituted by C. limba/us and P. arsius with an average similarity of 45%.For each predator, ontogenetic diet shift is common and is characterized by prey of low to high trophic level.Strong selection of certain prey types was observed in some predators while most of them avoided abundant prey.In addition to Acetes spp, strong predation impact was observed for penaeid prawns, epibenthic crabs and detritus.This information on trophic guilds and prey-predator interactions can be used to construct trophic model on the benthic ecosystem off Karnataka and to investigate fishery induced changes as well as predation impact of different animals on commercially important demersals
Resumo:
While the seriousness of the problem of antibiotic resistance is now recognized, the complex web of resistance linking humans, animals, and the environment is getting realized. More often, antibiotics are used as a preventive measure against diseases. Antibiotic use for agriculture leads to the increased resistance in the environment since antibiotics are inevitable element during agriculture/aquaculture and antibiotic residues are excreted as waste that is frequently spread onto farmland as organic fertilizer. Fecal bacteria survive long periods in the environment and spread through runoff into groundwater, rivers, and marine ecosystems.However, horizontal gene transfer occurs in the animals and guts of humans and in a variety of ecosystems, creating a pool of resistance in the rice fields and open waters. Even if people are not in direct contact with resistant disease through food animals, there are chances of contact with resistant fecal pathogens from the environment. Additionally, pathogens that are autochthonous to the environment can acquire resistance genes from the environment. Our study revealed that autochthonous , bacteria Vibrio spp gained antibiotic resistance in the environment. Further, it was evident that horizontal gene transfer occurs in Vibrio by means of plasmids, which further augments the gravity of the problem. Non-pathogenic bacteria may also acquire resistance genes and serve as a continuing source of resistance for other bacteria, both in the environment, and in the human gut. As the effectiveness of antibiotics for medical applications decline, the indiscriminate use of in aquaculture and in humans can have disastrous conditions in future due to horizontal gene transfer and the spread of resistant organisms: We must recognize and deal with the threat posed by overuse of antibiotics.