6 resultados para UNIFORM APPROXIMATION
em Cochin University of Science
Resumo:
An attempt is made to determine the relative power distribution in a step-index parabolic cylindrical waveguide (PCW) with high deformation across the direction of propagation. The guide is assumed to be made of silica. The scalar field approximation is employed for the analysis under which a vanishing refractive-index (RI) difference in the waveguide materials is considered. Further, no approximation for folds- is used in the analytical treatment. Due to the geometry of such waceguides, PCWs lose the well-defined modal discreteness, and a kind of mode bunching is observed instead, which becomes much more prominent in PCWs with high bends. However, with the increase in cross-sectional size, the mode-bunching tendency is slightly reduced. The general expressions for power in the guiding and nonguiding sections are obtained, and the fractional power patterns in all of the sections are presented for PCWs of various cross-sectional dimensions. It is observed that the confinement of power in the core section is increased for PCWs of larger cross-sectional size. Moreover, a fairly uniform distribution of power is seen over the modes having intermediate values of propagation constants
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
University of Cochin
Resumo:
This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.