2 resultados para Typhoid fever.
em Cochin University of Science
Resumo:
Contamination of environmental water by pathogenic microorganisms and subsequent infections originated from such sources during different contact and non- contact recreational activities are a major public health problem worldwide particularly in developing countries. The main pathogen frequently associated with enteric infection in developing countries are Salmonella enterica serovar typhi and paratyphi. Although the natural habitat of Salmonella is the gastrointestinal tract of animals, it find its way into natural water through faecal contamination and are frequently identified from various aquatic environments (Baudart et al., 2000; Dionisio et al., 2000; Martinez -Urtaza et al., 2004., Abhirosh et al., 2008). Typhoid fever caused by S. enterica serotype typhi and paratyphi are a common infectious disease occurring in all the parts of the world with its highest endemicity in certain parts of Asia, Africa, Latin America and in the Indian subcontinent with an estimated incidence of 33 million cases each year with significant morbidity and mortality (Threlfall, 2002). In most cases the disease is transmitted by polluted water (Girard et al., 2006) because of the poor hygienic conditions, inadequate clean water supplies and sewage treatment facilities. However in developed countries the disease is mainly associated with food (Bell et al., 2002) especially shellfish (Heinitz et al., 2000
Resumo:
The primary habitat of Salmonella is the gastrointestinal tract of animals and they are discharged into the water bodies through the feces. Aquatic animals act as asymptomatic reservoirs of a wide range of Salmonella serotypes. The inevitable delay in the detection of Salmonella contamination and the low sensitivity of the conventional methods is a serious issue in the seafood industry. Due to the indiscriminate use, the antibiotics are finally accumulated in the aquatic environment which provides the required antibiotic stress for the emergence of more and more antibiotic resistant phenotypes ofSalmonella. Several genetic determinants like integrons, genomic islands etc. play their role in acquisition and reshuffling of antibiotic resistance genes. A large number of virulence determinants are required for Salmonella pathogenicity. The virulence potential of Salmonella is determined, to some extent, by the presence of phages or phage mediated genes in the bacterial genome. There is much intra-serotype polymorphism in Salmonella and epidemiological studies rely on genetic resemblance of the isolated strains. Proper identification of the strain employing the traditional and molecular techniques is a prerequisite for accurate epidemiological studies (Soto et al., 2000). In this context, a study was undertaken to determine the prevalence of different Salmonella serotypes in seafood and to characterize them