32 resultados para Tropical Estuary
em Cochin University of Science
Resumo:
We are in the cutting edge of a new era of development without leaving any promises to next generation. But the scale and size of the problem are only partially blamed. The juggernaut of Globalisation has trampled upon whatever little hope we might have had making a quick transition to a less energy – intensive world. “Environment friendliness begins at home”. Our quest for productivity and profitability should progress simultaneous with our cooperative responsibility of leaving behind a clean and green earth for the generation to come. Climate change is the most pressing global environmental challenge being faced by humanity, with the quest for better productivity for our fragile ecosystem. It is too late to rely solely on reduction in Green house gas emissions to mitigate climate change although this is undoubtedly crucial. Coastal belts are more prone to these devastating impacts and its protection is an intensive filed of research. The present study describes how the colourful Carotenoids and Chlorophylls can be used in rapid hand on tool in conjunction with molecular biology to open sources and it also explores the fate of organic matter in the aquatic system and underlying sediments.
Resumo:
The amplified human role in shaping natural processes makes it imperative to understand the interactions between abiotic and biotic processes, whcih pertain particularly to the most dyanamic aboitic factor,water. The assessment of environmental parameters is indispensable for the sustainable management of the aqutic system .The conscious harnessing and pampering to protect the characteristics of the ecosystems is the of the day.This thesis attempts to characterize the chemical dynamacity of a tropical estury in relation to the bio, geo and physical processes and thereby to propose a management scheme for its sustainability. Micro speciation is used as a tool for this.
Resumo:
The study focuses attention on the nutrient chemistry of a tropical estuary namely the cochin estuary.The investigation was planned with the objective of studying the estuarine nutrient behaviour and to assess the role of biogeochemical cycling. The distribution of parameters of interest are better explained in the light of the hydrography of the region . Largely associated with the pollution problems of Cochin estuary receiving industrial and domestic wastes, this thesis projects the role of environmental parameters modifying the nutrient content of the water body coupled with studies on their minute variability subjected to physical, chemical and biological processes. The study has incorporated parameters like temperature, salinity, pH and D0; nutrients were investigated by the study of nitrite, nitrate. ammonia, inorganic reactive phosphorus, dissolved organic phosphorus, particulate reactive phosphorus, total reactive phosphorus and inorganic reactive silicate-silicon at surface and bottom layers of the estuary. Sediment associated interstitial and adsorbed phosphorus for a period of one year (1985-1986] were also incorporated
Resumo:
In this thesis a detailed sampling is conducted using grabs and dredges to access the qualitative and quantitative nature of the macrobenthos. A11 the animal contributing to the fauna are identified and their pattern of distribution and seasonal abundance are discussed. Affinity and diversity of polychaete fauna have also been studied. Importance of different benthic forms and their contribution to the standing crop are studied in detail. Trophic relationship between macrofauna and botton feeding commercially important fishes and prawns are also given attention. The physico-chemical aspects or the environment have been studied and their relation to the distribution and abundance of bottom fauna has been discussed. Environmental parameters such as temperature. salinity and dissolved oxygen. both in bottom and in the overlying waters. and rainfall were studied along with the benthos investigations. The physico-chemical nature of the sediments was also subjected to investigation. Influence of all those ecological parameters on the bottom fauna is discussed. A detailed quantitative faunal list of maorobenthio species and a brief systematic account of the polychaeta are also given.
Resumo:
Ecology is the study of systems at a level in which individuals or whole organisms may be considered elements of interaction, either among themselves, or with a loosely organised environmental matrix. Systems at this level are named ecosystems, and ecology, of course, is the biology of ecosystems" (Hargalef, 1968). This thesis includes principally, a study on the ecology of zooplankton of the Cochin backwaters conducted during the years 1971-72. This monsoonal estuarine system is particularly interesting, since it exhibits a wide range of variations in its environmental conditions which is naturally reflected in the fauna also. Several publications on various aspects of its hydrobiology have come out in the recent past. But studies on the zooplankton of the estuary have mostly been discontinuous either in space or time or restricted to its groups
Resumo:
Cochin backwaters, a tropical barbuilt estuary is well known for its prawn, molluscan and demersal fisheries. Also it formed the dumping area for sewage,235 retting of husks and discharge of effluents from industries located on either side of it. As a result the fishery is being gradually dwindled year after year due to the lowering of the water quality. The effect of industrial polution on the benthic community of this tropical estuary was worked out. An area extending over 21 km from the mouth of the estuary to upstream of industrial belt was selected. Temporal and spatial variations of 16 environmental parameters at 9 stations along the area were monitored monthly during 1981. Benthic fauna of these 9 stations consisted of amphipods , polychaetes, isopods, tanaidaceans, molluscs and other crustaceans (Decapods, Acetes, Alpheids, Balanus, insect larvae, chironomid larvae, cumacea and some fresh water forms ). Apart from these, sea anemone, flat worms, nematodes, sipunculoids, echinoderms and fishes were also encountered. 75 species belonging to 31 faunal groups were identified. Of these 31 groups, amphipods, polychaedes, isopods, tanaidaceans and molluscs were numerically abundant. Rest of the 26 groups (including 13 riverine forms) were found less significant due to their rare occurrence/low numerical abundance. Polychaetes and molluscs were the only major groups present at all the stations.
Resumo:
The situation in the backwaters of Kerala, which reportedly had about 70,000 ha of mangroves, is unique in the sense that there has been a total conversion to other uses such as paddy cultivation, coconut plantation, aquaculture, harbour development and urban development In order to save and restore what is left over national and international organisations are mounting pressure on scientists and policy makers to work out ways and means conserving and managing the mangrove ecosystems. In this context, it has been observed in recent years that mangrove vegetation has remained intact in isolated pockets of undisturbed areas in the Cochin estuarine system and also that there is resurgence of mangroves in areas of accretion and silting. The candidate took up the present study with a view to make an inventory of the existing mangrove locations, the areas of resurgence, species composition, zonation and other ecological parameters to understand their dynamism and to suggest a mangement plan for this important coastal ecosystem
Resumo:
The source, fate and diagentic pathway of sedimentary organic matter in estuaries are difficult to delineate due to the complexity of organic matter sources, intensive physical mixing and biological processes. A combination of bulk organic matter techniques and molecular biomarkers are found to be successful in explaining organic matter dynamics in estuaries. The basic requirement for these multi-proxy approaches are (i) sources have significantly differing characteristics, (ii) there are a sufficient number of tracers to delineate all sources and (iii) organic matter degradation and processing have little, similar or predictable effects on end member characteristics. Although there have been abundant researches that have attempted to tackle difficulties related to the source and fate of organic matter in estuarine systems, our understanding remains limited or rather inconsistent regarding the Indian estuaries. Cochin estuary is the largest among many extensive estuarine systems along the southwest coast of India. It supports as much biological productivity and diversity as tropical rain forests. In this study, we have used a combination of bulk geochemical parameters and different group of molecular biomarkers to define organic matter sources and thereby identifying various biogeochemical processes acting along the salinity gradient of the Cochin estuary
Resumo:
A toatal of 81 Escherichia coliisolates belonging to 43 different serotypes including several pathogenic strains such as enterotoxigenic E.coli isolated from a tropical estuary were tested against 12 antibiotics to determine the prevelance of multiple antibiotic resistance, antimicrobial resistance profiles and also to find out high risk source of contamination by MAR indexing.
Resumo:
The survival of Escherichia coli in tropical estuarine water has been studied under controlled laboratory conditions using microcosms. The survival has been assessed in terms of various self purifying factors of the natural waters such as biological, chemical and physical factors. The biological factors considered included competition from other microorganisms, predation by protozoa and coliphages. The suitability of the chemical composition of estuarine water has been studied under chemical factors and negative impact of sunlight has been studied under physical factors. The results revealed that sunlight exerted maximum negative impact, followed by biotic factors contained in the estuarine water. However, the chemical composition of the estuarine water is found to be suitable for the growth and survival of E. coli. The injury exerted by each of the above factors was also evaluated by using a selective and non-selective medium in conjunction. It was found that sunlight resulted in 100% injury of the cells as the cells failed to develop in a selective medium. While, sunlight resulted in the extinction of 90% of the E. coli cells within the first two hours of exposure, biotic factors took nearly 24 hours to remove the same amount of population.
Resumo:
Microcosm studies have been carried out to find out the relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Survival has been assessed in relation to the important self-purifying parameters such as biotic factors contained in the estuarine water, toxicity due to the dissolved organic and antibiotic substances in the water and the sunlight. The results revealed that sunlight is the most important inactivating factor on the survival of E. coli and S. typhimurium in the estuarine water. While the biological factors contained in the estuarine water such as protozoans and bacteriophages also exerted considerable inactivation of these organisms, the composition of the water with all its dissolved organic and inorganic substances was not damaging to the test organisms. Results also indicated better survival capacity of E. coli cells under all test conditions when compared to S. typhimurium