3 resultados para Trigonometry Formulas
em Cochin University of Science
Resumo:
The arrow shaped microstrip antenna, which produces dual frequency dual polarisation operation with considera-ble size reduction compared to conventional patches has been reported [I]. These antennas provide greater area reduction and improved gain compared to drum shaped patches [2]. Prediction of the resonance frequency of drum shaped patches [3] and circular patches for broadband operation [4] are available in the literature. In this Letter, we propose empirical formulas for calculating the resonance frequencies of the arrow shaped microstrip antenna. These antennas can be employed for obtaining dual frequency with the same polarisation, bandwidth enhancement, circular polarisation etc. by varying its different parameters or by introducing slots. The proposed design equations provide an easier and simple way of predicting the resonant frequencies of these patches.
Resumo:
The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results
Resumo:
A method for simultaneously enhancing the bandwidth and reducing the size of microstrip antennas (MSAs) using a modified ground plane (GP) has been proposed with design formulas. A combshaped truncated GP is used for this purpose. This method provides an overall compactness up to 85% for proximity-coupled MSAs in the frequency range of 900 MHz–5.5 GHz with an improvement inbandwidth up to seven times when compared with the conventional ones