6 resultados para Triazine moieties
em Cochin University of Science
Resumo:
The present study provides an account of the occurrence and diversity of marine yeasts in the slope sediments of Arabian Sea and Bay of Bengal. It also gives a clear idea about the role of yeasts in the benthic realm of marine ecosystem. The lipolytic potential of the organisms indicate the presence of rich lipid moieties in the study area. The isolates, Candida sp. SD 302 and Pichia guilliermondii SD 337 were proved to have potential oil degrading property and can be employed as bioremediators of oil spill after further characterization. The black yeasts isolated during the study area were found to have high commercial value by virtue of the by-products obtained from them. The melanin and the melanin degrading enzyme extracted from these organisms are potential bioactive materials for application in cosmetology.
Resumo:
Three copper(II) complexes of salicylaldehyde N(4)-phenyl thiosemicarbazone (H2L1) and two copper(II) complexes of N(4)-cyclohexyl thiosemicarbazone (H2L2) have been synthesized and characterized by different physicochemical techniques like magnetic studies and electronic, infrared and EPR spectral studies. The complexes View the MathML source and [(CuL2)2] (4) having dimeric structure. The thiosemicarbazones bind to the metal as dianionic ONS donor ligand in all the complexes, except in the complex [Cu(HL1)2] · H2O (2). In complex 2, the ligand moieties are coordinated as monoanionic (HL−) ones. Two of the complexes [CuL1dmbipy] · H2O (3) and [CuL2dmbipy] (5) have been found to possess the stoichiometry [CuLB], where B = 4,4′-dimethyl-2,2′-bipyridine (dmbipy). The coordination geometry around copper(II) in 5 is trigonal bipyramidal distorted square based pyramidal (TBDSBP), as obtained by X-ray diffraction studies.
Resumo:
Development of organic molecules that exhibit selective interactions with different biomolecules has immense significance in biochemical and medicinal applications. In this context, our main objective has been to design a few novel functionaIized molecules that can selectively bind and recognize nucleotides and DNA in the aqueous medium through non-covalent interactions. Our strategy was to design novel cycIophane receptor systems based on the anthracene chromophore linked through different bridging moieties and spacer groups. It was proposed that such systems would have a rigid structure with well defined cavity, wherein the aromatic chromophore can undergo pi-stacking interactions with the guest molecules. The viologen and imidazolium moieties have been chosen as bridging units, since such groups, can in principle, could enhance the solubility of these derivatives in the aqueous medium as well as stabilize the inclusion complexes through electrostatic interactions.We synthesized a series of water soluble novel functionalized cyclophanes and have investigated their interactions with nucleotides, DNA and oligonucIeotides through photophysical. chiroptical, electrochemical and NMR techniques. Results indicate that these systems have favorable photophysical properties and exhibit selective interactions with ATP, GTP and DNA involving electrostatic. hydrophobic and pi-stacking interactions inside the cavity and hence can have potential use as probes in biology.
Resumo:
This thesis Entitled phenylethynylarene based Donor-Acceptor systems:Desigh,Synthesis and Photophysical studies. A strategy for the design of donor-acceptor dyads, wherein decay of the charge separated (CS) state to low lying local triplet levels could possibly be prevented, is proposed. In order to examine this strategy, a linked donor-acceptor dyad BPEPPT with bis(phenylethYlly/)pyrene (BPEP) as the light absorber and acceptor and phenothiazine (PT) as donor was designed and photoinduced electron transfer in the dyad investigated. Absorption spectra of the dyad can be obtained by adding contributions due 10 the BPEP and PT moieties indicating that the constituents do not interact in the ground stale. Fluorescence of the BPEP moiety was efficiently quenched by the PT donor and this was attributed to electron lransfer from PT to BPEP. Picosecond transient absorption studies suggested formation of a charge separated state directly from the singlet excited state of BPEP. Nanosecond flash photolysis experiments gave long-ived transient absorptions assignable to PT radical cation and BPEP radical anion. These assignments were confirmed by oxygen quenching studies and secondary electron transfer experiments. Based on the available data, energy level diagram for BPEP-PT was constructed. The long lifetime of the charge separated state was attributed to the inverted region effects. The CS state did not undergo decay to low lying BPEP triplet indicating the success of our strategy
Resumo:
Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).
Resumo:
FT-IR spectrum of quinoline-2-carbaldehyde benzoyl hydrazone (HQb H2O) was recorded and analyzed. The synthesis and crystal structure data are also described. The vibrational wavenumbers were examined theoretically using the Gaussian03 package of programs using HF/6-31G(d) and B3LYP/6-31G(d) levels of theory. The data obtained from vibrational wavenumber calculations are used to assign vibrational bands obtained in infrared spectroscopy of the studied molecule. The first hyperpolarizability, infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The changes in the CAN bond lengths suggest an extended p-electron delocalization over quinoline and hydrazone moieties which is responsible for the non-linearity of the molecule