10 resultados para Toxicity tests
em Cochin University of Science
Resumo:
As a result of the issues of care and conservation and sustainable utilisation, the proper management of mangrove forests have become more pressing than ever. Much recent ecological and toxicological debate has been centered around the question of validity of making predictions about the future of mangrove ecosystemas a result of the newly evolved environmental policy. Though muchinformation exist on the biodiversity, floristic composition and characteristics, geographical distribution and uses of mangroves, systematic documentation of the various sedimentological and geochemical phenomena in relation to the mangrove flora are scarce. Hazardous, persistent, man-made chemicals and waste produces are entering the mangrove ecosystem at from the adjacent watersheds which strengthened alarming rates the indispensible need for further researches on the environmental behaviours, fate and the effect of such products. Studies on the effect of heavy metals, pesticides and the other toxic signals through bioassay and toxicity tests on mangrove species as well as in sediments definitely will furnish ample clues to establish the actual operative mechanisms of these environments. A thorough review of literature made in this angle reveals that some attempts have already been initiated the world over the record the physico-chemical characteristics of major abiotic components such as sediments and water of many mangrove ecosystem, however, adequate information is lacking in the Indian Environmental Science scenario. The present investigation is an attempt to record the sedimentological, mineralogical and geochemical characteristics of sediments as well as the heavy metal enrichment in the various species ofmangrove flora of three important mangrove ecosystems of Kerala, located at Veli (SouthKerala), Kochi (Central Kerala) and Kannur (North Kerala). The results of the above investigation have been analysed statistically, discussed based on the available literature and presented in this thesis under seven chapters
Resumo:
Toxicity of effluent from a titanium dioxide factory containing sulphuric acid residue with soluble iron metallic salts and insoluble material such as silica, etc. on fishes, decapods and molluscs was studied. The effluent caused changes in pH and oxygen depletion of the sea water. Sublethal effects of the precipitate of ferrous salts were also studied. Dilutions of effluent up to 1:150 were LC100 for all organisms used while 1:200 dilution was LC50 for fishes at 36 hr and for other organisms at 48 hr. But death of organisms at this concentration was caused by pH changes and oxygen depletion and did not account for the effects of the precipitate. Below this level precipitation started soon after mixing with sea water causing death of organisms by choking their gills and siphons. Dilutions,< 1:1000 were 96 hr LCO.
Resumo:
Division of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology
Resumo:
The onset of spontaneous seizures triggers a cascade of molecular and cellular events that eventually leads to neuronal injury and cognitive decline. The present study investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in restoring behavioural deficit by inhibiting oxidative stress induced alteration in glutamergic neurotransmission. The subdued performance in behavioural tests shows impaired motor coordination and memory. Histopathological investigations revealed significant neuronal loss in hippocampus of epileptic rats indicating glutamate mediated excitotoxicity. The treatment with WS and WA restored behavioural deficit and ameliorated neuronal loss. An altered redox homeostasis leading to oxidative stress is a hallmark of TLE. The antioxidant potential was afflicted in epileptic rats, evident from altered activity of SOD and CAT, down regulation of SOD and GPX expression and enhanced lipid peroxidation. The antioxidant property of WS and WA restored altered antioxidant capacity. Alteration in GDH activity and down regulation of GLAST expression resulted in enhanced glutamate content in the brain regions. The metabolism of glutamate was altered in the form of down regulated GAD expression. The alteration in synthesis, transport and metabolism resulted in further increase of the glutamate concentration at the synapse leading to glutamate mediated excitotoxicity. The decreased NMDA and AMPA receptor binding and down regulated NMDA R1, NMDA 2B and AMPA (GluR2) mRNA expression indicated altered glutamergic receptor function. The treatment with WS and WA reversed altered glutamergic receptor function, synthesis, transport and metabolism. The enhanced levels of second messenger IP3 responsible for Ca2+ mediated toxicity was reversed after treatment with WS and WA. Neurotoxics concentration of glutamate resulted in up regulation of pro apoptotic factors Bax and Caspase 8 and down regulation of anti apoptotic factor Akt resulting in neuronal death. The treatment with WS and WA resulted in activation of Akt and down regulation of Bax and caspase 8 leading to blocking of apoptotic pathway. The treatment with WS and WA resulted in reduced seizure frequency and amelioration of associated alterations suggesting the therapeutic role of Withania somnifera in temporal lobe epilepsy
Resumo:
In this thesis certain important aspects of heavy metal toxicity have been worked out. Recent studies have clearly shown that when experimental media contained more than one heavy metals, such metals could conspicuously influence the toxic reaction of the animals both in terms of quantity and nature. The experimental results available on individual metal toxicity show that, in majority of such results, unrealistically high concentrations of dissolved metals are involved. A remarkable number of factors have been shown to influence metal toxicity such as various environmental factors particularly temperature and salinity, the condition of the organism and the ability of some of the marine organisms to adapt to metallic contamination. Further, some of the more sensitive functions like embryonic and larval development, growth and fecundity, oxygen utilization and the function of various enzymes are found to be demonstrably sensitive in the presence of heavy metals. However, some of the above functions could be compensated for by adaptive process. If it is assumed that the presence of a single metal in higher concentrations could affect the life function of marine animals, more than one metal in the experimental media should manifest such effects in a greater scale. Commonly known as synergism or more than additivity, majority of heavy metals bring about synergistic reaction .The work presented in this thesis comprises lethal and sublethal toxicities of different salt forms of copper and silver on the brown mussel Perna indica. during the present investigation sublethal concentrations of copper and silver in their dent effects on survival, oxygen consumption, filtration, accumulation and depuration on Perna indica. The results are presented under different sections to make the presentation meaningful .
Resumo:
Pyocyanin is a versatile and multifunctional phenazine, widely used as a bio-control agent. Besides its toxicity in higher concentration, it has been applied as bio-control agents against many pathogens including the Vibrio spp. in aquaculture systems. The exact mechanism of the production of pyocyanin in Pseudomonas aeruginosa is well known, but the genetic modification of pyocyanin biosynthetic pathways in P. aeruginosa is not yet experimented to improve the yield of pyocyanin production. In this context, one of the aims of this work was to improve the yield of pyocyanin production in P. aeruginosa by way of increasing the copy number of pyocyanin pathway genes and their over expression. The specific aims of this work encompasses firstly, the identification of probiotic effect of P. aeruginosa isolated from various ecological niches, the overexpression of pyocyanin biosynthetic genes, development of an appropriate downstream process for large scale production of pyocyanin and its application in aquaculture industries. In addition, this work intends to examine the toxicity of pyocyanin on various developmental stages of tiger shrimp (Penaeus monodon), Artemia nauplii, microbial consortia of nitrifying bioreactors (Packed Bed Bioreactor, PBBR and Stringed Bed Suspended Bioreactor, SBSBR) and in vitro cell culture systems from invertebrates and vertebrates. The present study was undertaken with a vision to manage the pathogenic vibrios in aquaculture through eco-friendly and sustainable management strategies with the following objectives: Identification of Pseudomonas isolated from various ecological niches and its antagonism to pathogenic vibrios in aquaculture.,Saline dependent production of pyocyanin in Pseudomonas aeruginosa originated from different ecological niches and their selective application in aquaculture,Cloning and overexpression of Phz genes encoding phenazine biosynthetic pathway for the enhanced production of pyocyanin in Pseudomonas aeruginosa MCCB117,Development of an appropriate downstream process for large scale production of pyocyanin from PA-pUCP-Phz++; Structural elucidation and functional analysis of the purified compoundToxicity of pyocyanin on various biological systems.