17 resultados para Topological Strings
em Cochin University of Science
Resumo:
The main purpose of study is to extend the concept of the topological game G(K, X) and some other kinds of games into fuzzy topological games and to obtain some results regarding them. Owing to the fact that topological games have plenty of applications in covering properties, it made an attempt to explore some inter relations of games and covering properties in fuzzy topological spaces. Even though the main focus is on fuzzy para-meta compact spaces and closure preserving shading families, some brief sketches regarding fuzzy P-spaces and Shading Dimension is also provided. In a topological game players choose some objects related to the topological structure of a space such as points, closed subsets, open covers etc. More over the condition on a play to be winning for a player may also include topological notions such as closure, convergence, etc. It turns out that topological games are related to the Baire property, Baire spaces, Completeness properties, Convergence properties, Separation properties, Covering and Base properties, Continuous images, Suslin sets, Singular spaces etc.
Resumo:
The present study on chaos and fractals in general topological spaces. Chaos theory originated with the work of Edward Lorenz. The phenomenon which changes order into disorder is known as chaos. Theory of fractals has its origin with the frame work of Benoit Mandelbrot in 1977. Fractals are irregular objects. In this study different properties of topological entropy in chaos spaces are studied, which also include hyper spaces. Topological entropy is a measures to determine the complexity of the space, and compare different chaos spaces. The concept of fractals can’t be extended to general topological space fast it involves Hausdorff dimensions. The relations between hausdorff dimension and packing dimension. Regular sets in Metric spaces using packing measures, regular sets were defined in IR” using Hausdorff measures. In this study some properties of self similar sets and partial self similar sets. We can associate a directed graph to each partial selfsimilar set. Dimension properties of partial self similar sets are studied using this graph. Introduce superself similar sets as a generalization of self similar sets and also prove that chaotic self similar self are dense in hyper space. The study concludes some relationships between different kinds of dimension and fractals. By defining regular sets through packing dimension in the same way as regular sets defined by K. Falconer through Hausdorff dimension, and different properties of regular sets also.
Resumo:
The topology as the product set with a base chosen as all products of open sets in the individual spaces. This topology is known as box topology. The main objective of this study is to extend the concept of box products to fuzzy box products and to obtain some results regarding them. Owing to the fact that box products have plenty of applications in uniform and covering properties, here made an attempt to explore some inter relations of fuzzy uniform properties and fuzzy covering properties in fuzzy box products. Even though the main focus is on fuzzy box products, some brief sketches regarding hereditarily fuzzy normal spaces and fuzzy nabla product is also provided. The main results obtained include characterization of fuzzy Hausdroffness and fuzzy regularity of box products of fuzzy topological spaces. The investigation of the completeness of fuzzy uniformities in fuzzy box products proved that a fuzzy box product of spaces is fuzzy topologically complete if each co-ordinate space is fuzzy topologically complete. The thesis also prove that the fuzzy box product of a family of fuzzy α-paracompact spaces is fuzzy topologically complete. In Fuzzy box product of hereditarily fuzzy normal spaces, the main result obtained is that if a fuzzy box product of spaces is hereditarily fuzzy normal ,then every countable subset of it is fuzzy closed. It also deals with the notion of fuzzy nabla product of spaces which is a quotient of fuzzy box product. Here the study deals the relation connecting fuzzy box product and fuzzy nabla product
Resumo:
In this thesis we are studying possible invariants in hydrodynamics and hydromagnetics. The concept of flux preservation and line preservation of vector fields, especially vorticity vector fields, have been studied from the very beginning of the study of fluid mechanics by Helmholtz and others. In ideal magnetohydrodynamic flows the magnetic fields satisfy the same conservation laws as that of vorticity field in ideal hydrodynamic flows. Apart from these there are many other fields also in ideal hydrodynamic and magnetohydrodynamic flows which preserves flux across a surface or whose vector lines are preserved. A general study using this analogy had not been made for a long time. Moreover there are other physical quantities which are also invariant under the flow, such as Ertel invariant. Using the calculus of differential forms Tur and Yanovsky classified the possible invariants in hydrodynamics. This mathematical abstraction of physical quantities to topological objects is needed for an elegant and complete analysis of invariants.Many authors used a four dimensional space-time manifold for analysing fluid flows. We have also used such a space-time manifold in obtaining invariants in the usual three dimensional flows.In chapter one we have discussed the invariants related to vorticity field using vorticity field two form w2 in E4. Corresponding to the invariance of four form w2 ^ w2 we have got the invariance of the quantity E. w. We have shown that in an isentropic flow this quantity is an invariant over an arbitrary volume.In chapter three we have extended this method to any divergence-free frozen-in field. In a four dimensional space-time manifold we have defined a closed differential two form and its potential one from corresponding to such a frozen-in field. Using this potential one form w1 , it is possible to define the forms dw1 , w1 ^ dw1 and dw1 ^ dw1 . Corresponding to the invariance of the four form we have got an additional invariant in the usual hydrodynamic flows, which can not be obtained by considering three dimensional space.In chapter four we have classified the possible integral invariants associated with the physical quantities which can be expressed using one form or two form in a three dimensional flow. After deriving some general results which hold for an arbitrary dimensional manifold we have illustrated them in the context of flows in three dimensional Euclidean space JR3. If the Lie derivative of a differential p-form w is not vanishing,then the surface integral of w over all p-surfaces need not be constant of flow. Even then there exist some special p-surfaces over which the integral is a constant of motion, if the Lie derivative of w satisfies certain conditions. Such surfaces can be utilised for investigating the qualitative properties of a flow in the absence of invariance over all p-surfaces. We have also discussed the conditions for line preservation and surface preservation of vector fields. We see that the surface preservation need not imply the line preservation. We have given some examples which illustrate the above results. The study given in this thesis is a continuation of that started by Vedan et.el. As mentioned earlier, they have used a four dimensional space-time manifold to obtain invariants of flow from variational formulation and application of Noether's theorem. This was from the point of view of hydrodynamic stability studies using Arnold's method. The use of a four dimensional manifold has great significance in the study of knots and links. In the context of hydrodynamics, helicity is a measure of knottedness of vortex lines. We are interested in the use of differential forms in E4 in the study of vortex knots and links. The knowledge of surface invariants given in chapter 4 may also be utilised for the analysis of vortex and magnetic reconnections.
Resumo:
The study on the fuzzy absolutes and related topics. The different kinds of extensions especially compactification formed a major area of study in topology. Perfect continuous mappings always preserve certain topological properties. The concept of Fuzzy sets introduced by the American Cyberneticist L. A Zadeh started a revolution in every branch of knowledge and in particular in every branch of mathematics. Fuzziness is a kind of uncertainty and uncertainty of a symbol lies in the lack of well-defined boundaries of the set of objects to which this symbol belongs. Introduce an s-continuous mapping from a topological space to a fuzzy topological space and prove that the image of an H-closed space under an s-continuous mapping is f-H closed. Here also proved that the arbitrary product fi and sum of fi of the s-continuous maps fi are also s-continuous. The original motivation behind the study of absolutes was the problem of characterizing the projective objects in the category of compact spaces and continuous functions.
Resumo:
The present study on some infinite convex invariants. The origin of convexity can be traced back to the period of Archimedes and Euclid. At the turn of the nineteenth centaury , convexicity became an independent branch of mathematics with its own problems, methods and theories. The convexity can be sorted out into two kinds, the first type deals with generalization of particular problems such as separation of convex sets[EL], extremality[FA], [DAV] or continuous selection Michael[M1] and the second type involved with a multi- purpose system of axioms. The theory of convex invariants has grown out of the classical results of Helly, Radon and Caratheodory in Euclidean spaces. Levi gave the first general definition of the invariants Helly number and Radon number. The notation of a convex structure was introduced by Jamison[JA4] and that of generating degree was introduced by Van de Vel[VAD8]. We also prove that for a non-coarse convex structure, rank is less than or equal to the generating degree, and also generalize Tverberg’s theorem using infinite partition numbers. Compare the transfinite topological and transfinite convex dimensions
Resumo:
In this study we combine the notions of fuzzy order and fuzzy topology of Chang and define fuzzy ordered fuzzy topological space. Its various properties are analysed. Product, quotient, union and intersection of fuzzy orders are introduced. Besides, fuzzy order preserving maps and various fuzzy completeness are investigated. Finally an attempt is made to study the notion of generalized fuzzy ordered fuzzy topological space by considering fuzzy order defined on a fuzzy subset.
Resumo:
Secret sharing schemes allow a secret to be shared among a group of participants so that only qualified subsets of participants can recover the secret. A visual cryptography scheme (VCS) is a special kind of secret sharing scheme in which the secret to share consists of an image and the shares consist of xeroxed transparencies which are stacked to recover the shared image. In this thesis we have given the theoretical background of Secret Sharing Schemes and the historical development of the subject. We have included a few examples to improve the readability of the thesis. We have tried to maintain the rigor of the treatment of the subject. The limitations and disadvantages of the various forms secret sharing schemes are brought out. Several new schemes for both dealing and combining are included in the thesis. We have introduced a new number system, called, POB number system. Representation using POB number system has been presented. Algorithms for finding the POB number and POB value are given.We have also proved that the representation using POB number system is unique and is more efficient. Being a new system, there is much scope for further development in this area.
Resumo:
Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems. Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization properties of the nonlinear system under consideration in its characteristic parameter space is attempted.
Resumo:
The author presents the development of a new dielectric resonator antenna(DRA) suitable for wideband wireless communication applications.The design comprises of a simple cylindrical dielectric resonator (DR) and a microstrip feed, in a low radiation-Q structure,enabling wide impedance bandwidth.The radiation pattern is conical shaped,resulted from thew low-Q structure.Dielectric constant of the DR,its dimensions and topological parameters of the feed line are the major design parameters of the antenna.By proper selection of these parameters,the DRA can be operated over a wideband width covering multiple wireless applications.The antenna is simulated using Ansoft HFSS TM and measured using HP 8510C vector network analyser.Some of the measured results are confirmed by using the Finite Difference Time Domain(FDTD) technique implemented in MATLAB.
Resumo:
In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention