2 resultados para Top-down control

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been an ever-attractive subject area for engineers and scientists alike because of its versatility in finding applications in useful devices. They find applications in a host of devices ranging from rudimentary devices like loud speakers to sophisticated gadgets like waveguides and Magnetic Random Access Memories (MRAM).The one and only material in the realm of magnetism that has been at the centre stage of applications is ferrites and in that spinel ferrites received the lions share as far as practical applications are concerned.It has been the endeavour of scientists and engineers to remove obsolescence and improve upon the existing so as to save energy and integrate in to various other systems. This has been the hallmark of material scientists and this has led to new materials and new technologies.In the field of ferrites too there has been considerable interest to devise new materials based on iron oxides and other compounds. This means synthesising ultra fine particles and tuning its properties to device new materials. There are various preparation techniques ranging from top- down to bottom-up approaches. This includes synthesising at molecular level, self assembling,gas based condensation. Iow temperature eo-precipitation, solgel process and high energy ball milling. Among these methods sol-gel process allows good control of the properties of ceramic materials. The advantage of this method includes processing at low temperature. mixing at the molecular level and fabrication of novel materials for various devices.Composites are materials. which combine the good qualities of one or more components. They can be prepared in situ or by mechanical means by the incorporation of fine particles in appropriate matrixes. The size of the magnetic powders as well as the nature of matrix affect the processability and other physical properties of the final product. These plastic/rubber magnets can in turn be useful for various applications in different devices. In applications involving ferrites at high frequencies, it is essential that the material possesses an appropriate dielectric permittivity and suitable magnetic permeability. This can be achieved by synthesizing rubber ferrite composites (RFC's). RFCs are very useful materials for microwave absorptions. Hence the synthesis of ferrites in the nanoregirne.investigations on their size effects on the structural, magnetic, and electrical properties and the incorporation of these ferrites into polymer matrixes assume significance.In the present study, nano particles of NiFe204, Li(!5Fe2S04 and Col-e-O, are prepared by sol gel method. By appropriate heat treatments, particles of different grain sizes are obtained. The structural, magnetic and electrical measurements are evaluated as a function of grain size and temperature. NiFel04 prepared in the ultrafine regime are then incorporated in nitrile rubber matrix. The incorporation was carried out according to a specific recipe and for various loadings of magnetic fillers. The cure characteristics, magnetic properties, electrical properties and mechanical properties of these elastomer blends are carried out. The electrical permittivity of all the rubber samples in the X - band are also conducted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanoparticles are of immense importance both from the fundamental and application points of view. They exhibit quantum size effects which are manifested in their improved magnetic and electric properties. Mechanical attrition by high energy ball milling (HEBM) is a top down process for producing fine particles. However, fineness is associated with high surface area and hence is prone to oxidation which has a detrimental effect on the useful properties of these materials. Passivation of nanoparticles is known to inhibit surface oxidation. At the same time, coating polymer film on inorganic materials modifies the surface properties drastically. In this work a modified set-up consisting of an RF plasma polymerization technique is employed to coat a thin layer of a polymer film on Fe nanoparticles produced by HEBM. Ball-milled particles having different particle size ranges are coated with polyaniline. Their electrical properties are investigated by measuring the dc conductivity in the temperature range 10–300 K. The low temperature dc conductivity (I–V ) exhibited nonlinearity. This nonlinearity observed is explained on the basis of the critical path model. There is clear-cut evidence for the occurrence of intergranular tunnelling. The results are presented here in this paper