7 resultados para Titanate

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric ceramics BaNd2Ti3Oto, BaNd2Ti4O12 and BaNd2Ti5O14 have been prepared by Conventional solid state ceramic route. The sintered ceramic samples have been characterized by X-ray diffraction and Scanning Electron Microscopy (SEM). The dielectric properties in the microwave frequency range have been measured using conventional microwave dielectric resonator methods. The BaNd2Ti1O10, BaN2Ti4O12 and BaNd2Ti5O14 have dielectric constants (Er) ~ 60, 84 and 77 respectively. They have relatively high quality factors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis entitled "Sol-Gel Alumina Nano Composites for Functional Applications" investigate sol-gel methods of synthesis of alumina nanocomposites special reference to alumina-aluminium titanate and alumina-lanthanum phosphate composites. The functional properties such as thermal expansion coefficient and thermal shock resistance, machinability of composites as well as thermal protection are highlighted in addition to novel approach in synthesis of composites.A general introduction of alumina matrix composites materials, followed by brief coverage of alumina-aluminium titanate and alumina-lanthanum phosphate composites is highlight of the first chapter. The second chapter deals with the sol-gel synthesis of aluminium titanate and alumina-aluminium titanate composite. The synthesis of machinable substrate, based on alumina and lanthanum phosphate forms the basis of the third chapter. The fourth chapter describes the sol-gel coating of mullite on SiC substrate for the possible gas filtration application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of methods to economically synthesize single wire structured multiferroic systems with room temperature spin−charge coupling is expected to be important for building next-generation multifunctional devices with ultralow power consumption. We demonstrate the fabrication of a single nanowire multiferroic system, a new geometry, exhibiting room temperature magnetodielectric coupling. A coaxial nanotube/nanowire heterostructure of barium titanate (BaTiO3, BTO) and cobalt (Co) has been synthesized using a template-assisted method. Room temperature ferromagnetism and ferroelectricity were exhibited by this coaxial system, indicating the coexistence of more than one ferroic interaction in this composite system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead free magneto electrics with a strong sub resonant (broad frequency range) magneto electric coupling coefficient (MECC) is the goal of the day which can revolutionise the microelectronics and microelectromechanical systems (MEMS) industry. We report giant resonant MECC in lead free nanograined Barium Titanate–CoFe (Alloy)-Barium Titanate [BTO-CoFe-BTO] sandwiched thin films. The resonant MECC values obtained here are the highest values recorded in thin films/ multilayers. Sub-resonant MECC values are quite comparable to the highest MECC reported in 2-2 layered structures. MECC got enhanced by two orders at a low frequency resonance. The results show the potential of these thin films for transducer, magnetic field assisted energy harvesters, switching devices, and storage applications. Some possible device integration techniques are also discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetism and magnetic materials have been playing a lead role in improving the quality of life. They are increasingly being used in a wide variety of applications ranging from compasses to modern technological devices. Metallic glasses occupy an important position among magnetic materials. They assume importance both from a scientific and an application point of view since they represent an amorphous form of condensed matter with significant deviation from thermodynamic equilibrium. Metallic glasses having good soft magnetic properties are widely used in tape recorder heads, cores of high-power transformers and metallic shields. Superconducting metallic glasses are being used to produce high magnetic fields and magnetic levitation effect. Upon heat treatment, they undergo structural relaxation leading to subtle rearrangements of constituent atoms. This leads to densification of amorphous phase and subsequent nanocrystallisation. The short-range structural relaxation phenomenon gives rise to significant variations in physical, mechanical and magnetic properties. Magnetic amorphous alloys of Co-Fe exhibit excellent soft magnetic properties which make them promising candidates for applications as transformer cores, sensors, and actuators. With the advent of microminiaturization and nanotechnology, thin film forms of these alloys are sought after for soft under layers for perpendicular recording media. The thin film forms of these alloys can also be used for fabrication of magnetic micro electro mechanical systems (magnetic MEMS). In bulk, they are drawn in the form of ribbons, often by melt spinning. The main constituents of these alloys are Co, Fe, Ni, Si, Mo and B. Mo acts as the grain growth inhibitor and Si and B facilitate the amorphous nature in the alloy structure. The ferromagnetic phases such as Co-Fe and Fe-Ni in the alloy composition determine the soft magnetic properties. The grain correlation length, a measure of the grain size, often determines the soft magnetic properties of these alloys. Amorphous alloys could be restructured in to their nanocrystalline counterparts by different techniques. The structure of nanocrystalline material consists of nanosized ferromagnetic crystallites embedded in an amorphous matrix. When the amorphous phase is ferromagnetic, they facilitate exchange coupling between nanocrystallites. This exchange coupling results in the vanishing of magnetocrystalline anisotropy which improves the soft magnetic properties. From a fundamental perspective, exchange correlation length and grain size are the deciding factors that determine the magnetic properties of these nanocrystalline materials. In thin films, surfaces and interfaces predominantly decides the bulk property and hence tailoring the surface roughness and morphology of the film could result in modified magnetic properties. Surface modifications can be achieved by thermal annealing at various temperatures. Ion irradiation is an alternative tool to modify the surface/structural properties. The surface evolution of a thin film under swift heavy ion (SHI) irradiation is an outcome of different competing mechanism. It could be sputtering induced by SHI followed by surface roughening process and the material transport induced smoothening process. The impingement of ions with different fluence on the alloy is bound to produce systematic microstructural changes and this could effectively be used for tailoring magnetic parameters namely coercivity, saturation magnetization, magnetic permeability and remanence of these materials. Swift heavy ion irradiation is a novel and an ingenious tool for surface modification which eventually will lead to changes in the bulk as well as surface magnetic property. SHI has been widely used as a method for the creation of latent tracks in thin films. The bombardment of SHI modifies the surfaces or interfaces or creates defects, which induces strain in the film. These changes will have profound influence on the magnetic anisotropy and the magnetisation of the specimen. Thus inducing structural and morphological changes by thermal annealing and swift heavy ion irradiation, which in turn induce changes in the magnetic properties of these alloys, is one of the motivation of this study. Multiferroic and magneto-electrics is a class of functional materials with wide application potential and are of great interest to material scientists and engineers. Magnetoelectric materials combine both magnetic as well as ferroelectric properties in a single specimen. The dielectric properties of such materials can be controlled by the application of an external magnetic field and the magnetic properties by an electric field. Composites with magnetic and piezo/ferroelectric individual phases are found to have strong magnetoelectric (ME) response at room temperature and hence are preferred to single phasic multiferroic materials. Currently research in this class of materials is towards optimization of the ME coupling by tailoring the piezoelectric and magnetostrictive properties of the two individual components of ME composites. The magnetoelectric coupling constant (MECC) (_ ME) is the parameter that decides the extent of interdependence of magnetic and electric response of the composite structure. Extensive investigates have been carried out in bulk composites possessing on giant ME coupling. These materials are fabricated by either gluing the individual components to each other or mixing the magnetic material to a piezoelectric matrix. The most extensively investigated material combinations are Lead Zirconate Titanate (PZT) or Lead Magnesium Niobate-Lead Titanate (PMNPT) as the piezoelectric, and Terfenol-D as the magnetostrictive phase and the coupling is measured in different configurations like transverse, longitudinal and inplane longitudinal. Fabrication of a lead free multiferroic composite with a strong ME response is the need of the hour from a device application point of view. The multilayer structure is expected to be far superior to bulk composites in terms of ME coupling since the piezoelectric (PE) layer can easily be poled electrically to enhance the piezoelectricity and hence the ME effect. The giant magnetostriction reported in the Co-Fe thin films makes it an ideal candidate for the ferromagnetic component and BaTiO3 which is a well known ferroelectric material with improved piezoelectric properties as the ferroelectric component. The multilayer structure of BaTiO3- CoFe- BaTiO3 is an ideal system to understand the underlying fundamental physics behind the ME coupling mechanism. Giant magnetoelectric coupling coefficient is anticipated for these multilayer structures of BaTiO3-CoFe-BaTiO3. This makes it an ideal candidate for cantilever applications in magnetic MEMS/NEMS devices. SrTiO3 is an incipient ferroelectric material which is paraelectric up to 0K in its pure unstressed form. Recently few studies showed that ferroelectricity can be induced by application of stress or by chemical / isotopic substitution. The search for room temperature magnetoelectric coupling in SrTiO3-CoFe-SrTiO3 multilayer structures is of fundamental interest. Yet another motivation of the present work is to fabricate multilayer structures consisting of CoFe/ BaTiO3 and CoFe/ SrTiO3 for possible giant ME coupling coefficient (MECC) values. These are lead free and hence promising candidates for MEMS applications. The elucidation of mechanism for the giant MECC also will be the part of the objective of this investigation.