23 resultados para Time-invariant Wavelet Analysis

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a multispectral analysis system using wavelet based Principal Component Analysis (PCA), to improve the brain tissue classification from MRI images. Global transforms like PCA often neglects significant small abnormality details, while dealing with a massive amount of multispectral data. In order to resolve this issue, input dataset is expanded by detail coefficients from multisignal wavelet analysis. Then, PCA is applied on the new dataset to perform feature analysis. Finally, an unsupervised classification with Fuzzy C-Means clustering algorithm is used to measure the improvement in reproducibility and accuracy of the results. A detailed comparative analysis of classified tissues with those from conventional PCA is also carried out. Proposed method yielded good improvement in classification of small abnormalities with high sensitivity/accuracy values, 98.9/98.3, for clinical analysis. Experimental results from synthetic and clinical data recommend the new method as a promising approach in brain tissue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mann–Kendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889–1918 (NP1), 1919–1948 (NP2), 1949–1978 (NP3) and 1979–2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June– September, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889–2008) mean annual rainfall of CNE India is 1,195.1 mm with a standard deviation of 134.1 mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6 mm/year for Jharkhand and 3.2 mm/day for CNE India. Since rice crop is the important kharif crop (May– October) in this region, the decreasing trend of rainfall during themonth of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During themonth of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November–March) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914– 2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during postmonsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4– 8 years peak periodicity band has been noticed during September over Western UP, and 30–34 years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the characteristics of the upper troposphere and lower stratosphere over the Asian summer monsoon region, more specifically over the Indian subcontinent. Mainly three important parameters are taken such as zonal wind, temperature and ozone over the UT/LS of the Asian summer monsoon region. It made a detailed study of its interannual variability and characteristics of theses parameters during the Indian summer monsoon period. Monthly values of zonal wind and temperature from the NCEP/NCAR reanalysis for the period 1960-2002 are used for the present study. Also the daily overpass total ozone data for the 12 Indian stations (from low latitude to high latitudes) from the TOMS Nimbus 7 satellite for the period 1979 to 1992 were also used to understand the total ozone variation over the Indian region. The study reveals that if QBO phases in the stratosphere is easterly or weak westerly then the respective monsoon is found to be DRY or below Normal . On the other hand, if the phase is westerly or weak easterly the respective Indian summer monsoon is noted as a WET year. This connection of stratospheric QBO phases and Indian summer monsoon gives more insight in to the long-term predictions of Indian summer monsoon rainfall. Wavelet analysis and EOF methods are the two advanced statistical techniques used in the present study to explore more information of the zonal wind that from the smaller scale to higher scale variability over the Asian summer monsoon region. The interannual variability of temperature for different stratospheric and tropospheric levels over the Asian summer monsoon region have been studied. An attempt has been made to understand the total ozone characteristics and its interannual variablilty over 12 Indian stations spread from south latitudes to north latitudes. Finally it found that the upper troposphere and lower stratosphere contribute significantly to monsoon variability and climate changes. It is also observed that there exists a link between the stratospheric QBO and Indian summer monsoon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRMM Microwave Imager (TMI) is reported to be a useful sensor to measure the atmospheric and oceanic parameters even in cloudy conditions. Vertically integrated specific humidity, Total Precipitable Water (TPW) retrieved from the water vapour absorption channel (22GHz.) along with 10m wind speed and rain rate derived from TMI is used to investigate the moisture variation over North Indian Ocean. Intraseasonal Oscillations (ISO) of TPW during the summer monsoon seasons 1998, 1999, and 2000 over North Indian Ocean is explored using wavelet analysis. The dominant waves in TPW during the monsoon periods and the differences in ISO over Arabian Sea and Bay of Bengal are investigated. The northward propagation of TPW anomaly and its coherence with the coastal rainfall is also studied. For the diagnostic study of heavy rainfall spells over the west coast, the intrusion of TPW over the North Arabian Sea is seen to be a useful tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active microwave imaging is explored as an imaging modality for early detection of breast cancer. When exposed to microwaves, breast tumor exhibits electrical properties that are significantly different from that of healthy breast tissues. The two approaches of active microwave imaging — confocal microwave technique with measured reflected signals and microwave tomographic imaging with measured scattered signals are addressed here. Normal and malignant breast tissue samples of same person are subjected to study within 30 minutes of mastectomy. Corn syrup is used as coupling medium, as its dielectric parameters show good match with that of the normal breast tissue samples. As bandwidth of the transmitter is an important aspect in the time domain confocal microwave imaging approach, wideband bowtie antenna having 2:1 VSWR bandwidth of 46% is designed for the transmission and reception of microwave signals. Same antenna is used for microwave tomographic imaging too at the frequency of 3000 MHz. Experimentally obtained time domain results are substantiated by finite difference time domain (FDTD) analysis. 2-D tomographic images are reconstructed with the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis entitled "Studies on improved practices of prawn farming for higher production in central Kerala" prepared by the author describes various practices prevailing in the study area in order to elucidate their relative merits. The study on semi-intensive farming at Mundapuram, Kannur was also carried out and included in the thesis for comparison.The author felt it important to make a critical study of the existing culture practices in the central Kerala, a region where it has been existing since time immemorial.Careful analysis of data accrued by the author has helped him to identify strength, weakness, opportunities and threats confronting the shrimp farming. As a result it was possible to evolve an appropriate management technology taking into consideration the various ecological (location specific), social and economical conditions prevalent in the vast study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing fishing pressure in coastal waters is the need of the day in the Indian marine fisheries sector of the country which is fast changing from a mere vocational activity to a capital intensive industry. It requires continuous monitoring of the resource exploitation through a scientifically acceptable methodology, data on production of each species stock, the number and characteristics of the fishing gears of the fleet, various biological characteristics of each stock, the impact of fishing on the environment and the role of fishery—independent on availability and abundance. Besides this, there are issues relating to capabilities in stock assessment, taxonomy research, biodiversity, conservation and fisheries management. Generation of reliable data base over a fixed time frame, their analysis and interpretation are necessary before drawing conclusions on the stock size, maximum sustainable yield, maximum economic yield and to further implement various fishing regulatory measures. India being a signatory to several treaties and conventions, is obliged to carry out assessments of the exploited stocks and manage them at sustainable levels. Besides, the nation is bound by its obligation of protein food security to people and livelihood security to those engaged in marine fishing related activities. Also, there are regional variabilities in fishing technology and fishery resources. All these make it mandatory for India to continue and strengthen its marine capture fisheries research in general and deep sea fisheries in particular. Against this background, an attempt is made to strengthen the deep sea fish biodiversity and also to generate data on the distribution, abundance, catch per unit effort of fishery resources available beyond 200 m in the EEZ of southwest coast ofIndia and also unravel some of the aspects of life history traits of potentially important non conventional fish species inhabiting in the depth beyond 200 m. This study was carried out as part of the Project on Stock Assessment and Biology of Deep Sea Fishes of Indian EEZ (MoES, Govt. of India).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study on variable stars is an important topic of modern astrophysics. After the invention of powerful telescopes and high resolving powered CCD’s, the variable star data is accumulating in the order of peta-bytes. The huge amount of data need lot of automated methods as well as human experts. This thesis is devoted to the data analysis on variable star’s astronomical time series data and hence belong to the inter-disciplinary topic, Astrostatistics. For an observer on earth, stars that have a change in apparent brightness over time are called variable stars. The variation in brightness may be regular (periodic), quasi periodic (semi-periodic) or irregular manner (aperiodic) and are caused by various reasons. In some cases, the variation is due to some internal thermo-nuclear processes, which are generally known as intrinsic vari- ables and in some other cases, it is due to some external processes, like eclipse or rotation, which are known as extrinsic variables. Intrinsic variables can be further grouped into pulsating variables, eruptive variables and flare stars. Extrinsic variables are grouped into eclipsing binary stars and chromospheri- cal stars. Pulsating variables can again classified into Cepheid, RR Lyrae, RV Tauri, Delta Scuti, Mira etc. The eruptive or cataclysmic variables are novae, supernovae, etc., which rarely occurs and are not periodic phenomena. Most of the other variations are periodic in nature. Variable stars can be observed through many ways such as photometry, spectrophotometry and spectroscopy. The sequence of photometric observa- xiv tions on variable stars produces time series data, which contains time, magni- tude and error. The plot between variable star’s apparent magnitude and time are known as light curve. If the time series data is folded on a period, the plot between apparent magnitude and phase is known as phased light curve. The unique shape of phased light curve is a characteristic of each type of variable star. One way to identify the type of variable star and to classify them is by visually looking at the phased light curve by an expert. For last several years, automated algorithms are used to classify a group of variable stars, with the help of computers. Research on variable stars can be divided into different stages like observa- tion, data reduction, data analysis, modeling and classification. The modeling on variable stars helps to determine the short-term and long-term behaviour and to construct theoretical models (for eg:- Wilson-Devinney model for eclips- ing binaries) and to derive stellar properties like mass, radius, luminosity, tem- perature, internal and external structure, chemical composition and evolution. The classification requires the determination of the basic parameters like pe- riod, amplitude and phase and also some other derived parameters. Out of these, period is the most important parameter since the wrong periods can lead to sparse light curves and misleading information. Time series analysis is a method of applying mathematical and statistical tests to data, to quantify the variation, understand the nature of time-varying phenomena, to gain physical understanding of the system and to predict future behavior of the system. Astronomical time series usually suffer from unevenly spaced time instants, varying error conditions and possibility of big gaps. This is due to daily varying daylight and the weather conditions for ground based observations and observations from space may suffer from the impact of cosmic ray particles. Many large scale astronomical surveys such as MACHO, OGLE, EROS, xv ROTSE, PLANET, Hipparcos, MISAO, NSVS, ASAS, Pan-STARRS, Ke- pler,ESA, Gaia, LSST, CRTS provide variable star’s time series data, even though their primary intention is not variable star observation. Center for Astrostatistics, Pennsylvania State University is established to help the astro- nomical community with the aid of statistical tools for harvesting and analysing archival data. Most of these surveys releases the data to the public for further analysis. There exist many period search algorithms through astronomical time se- ries analysis, which can be classified into parametric (assume some underlying distribution for data) and non-parametric (do not assume any statistical model like Gaussian etc.,) methods. Many of the parametric methods are based on variations of discrete Fourier transforms like Generalised Lomb-Scargle peri- odogram (GLSP) by Zechmeister(2009), Significant Spectrum (SigSpec) by Reegen(2007) etc. Non-parametric methods include Phase Dispersion Minimi- sation (PDM) by Stellingwerf(1978) and Cubic spline method by Akerlof(1994) etc. Even though most of the methods can be brought under automation, any of the method stated above could not fully recover the true periods. The wrong detection of period can be due to several reasons such as power leakage to other frequencies which is due to finite total interval, finite sampling interval and finite amount of data. Another problem is aliasing, which is due to the influence of regular sampling. Also spurious periods appear due to long gaps and power flow to harmonic frequencies is an inherent problem of Fourier methods. Hence obtaining the exact period of variable star from it’s time series data is still a difficult problem, in case of huge databases, when subjected to automation. As Matthew Templeton, AAVSO, states “Variable star data analysis is not always straightforward; large-scale, automated analysis design is non-trivial”. Derekas et al. 2007, Deb et.al. 2010 states “The processing of xvi huge amount of data in these databases is quite challenging, even when looking at seemingly small issues such as period determination and classification”. It will be beneficial for the variable star astronomical community, if basic parameters, such as period, amplitude and phase are obtained more accurately, when huge time series databases are subjected to automation. In the present thesis work, the theories of four popular period search methods are studied, the strength and weakness of these methods are evaluated by applying it on two survey databases and finally a modified form of cubic spline method is intro- duced to confirm the exact period of variable star. For the classification of new variable stars discovered and entering them in the “General Catalogue of Vari- able Stars” or other databases like “Variable Star Index“, the characteristics of the variability has to be quantified in term of variable star parameters.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.