4 resultados para Time-Fractional Multiterm Diffusion Equation
em Cochin University of Science
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation
Resumo:
Sonar signal processing comprises of a large number of signal processing algorithms for implementing functions such as Target Detection, Localisation, Classification, Tracking and Parameter estimation. Current implementations of these functions rely on conventional techniques largely based on Fourier Techniques, primarily meant for stationary signals. Interestingly enough, the signals received by the sonar sensors are often non-stationary and hence processing methods capable of handling the non-stationarity will definitely fare better than Fourier transform based methods.Time-frequency methods(TFMs) are known as one of the best DSP tools for nonstationary signal processing, with which one can analyze signals in time and frequency domains simultaneously. But, other than STFT, TFMs have been largely limited to academic research because of the complexity of the algorithms and the limitations of computing power. With the availability of fast processors, many applications of TFMs have been reported in the fields of speech and image processing and biomedical applications, but not many in sonar processing. A structured effort, to fill these lacunae by exploring the potential of TFMs in sonar applications, is the net outcome of this thesis. To this end, four TFMs have been explored in detail viz. Wavelet Transform, Fractional Fourier Transfonn, Wigner Ville Distribution and Ambiguity Function and their potential in implementing five major sonar functions has been demonstrated with very promising results. What has been conclusively brought out in this thesis, is that there is no "one best TFM" for all applications, but there is "one best TFM" for each application. Accordingly, the TFM has to be adapted and tailored in many ways in order to develop specific algorithms for each of the applications.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.