23 resultados para Thermoset Fibre Reinforced Polymer

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study deals with the short isora fibre reinforced natural rubber composites. In recent years there has been a tremendous advancement in the field of science and technology of short fibre reinforced polymer composites. The low density, high strength, high stiffness to weight ratio, excellent durability and design flexibility are the primary reasons for their use in many diversified fields such as air crafts, automobiles, marine industry etc. Compared to the various natural and synthetic fibres used as reinforcement for elastomer composites isora fibre is superior in many aspects. `Isora' is a natural lignocellulosic fibre which is easily available in South India especially in Kerala. The fibre is separated from the bark of the Helicteres isora plant by retting process. This fibre has excellent mechanical properties and is easily amenable to physical and chemical modifications. The study shows that composites with poor interfacial bonding tend to dissipate more energy than that with to interfacial bonding. The mechanical loss also can be related to interfacial bonding. The effect of chemical treatment of isora fibre on damping was also studied. Both in the low and high temperature region which indicates that this composite posseses low damping and hence good interfacial bonding characteristics. Hence these composites are better candidates for high damping applications. Composites with longitudinally oriented fibres showed high storage modulus than transversely oriented ones due to the effective stress transfer between fibre and matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study shows that standard plastics like polypropylene and high density polyethylene can be reinforced by adding nylon short fibres. Compared to the conventional glass reinforced thermoplastics this novel class of reinforced thermoplastics has the major advantage of recyclability. Hence such composites represent a new spectrum of recyclable polymer composites. The fibre length and fibre diameter used for reinforcement are critical parameters While there is a critical fibre length below which no effective reinforcement takes place, the reinforcement improves when the fibre diameter decreases due to increased surface area.While the fibres alone give moderate reinforcement, chemical modification of the matrix can further improve the strength and modulus of the composites. Maleic anhydride grafting in presence of styrene was found to be the most efficient chemical modification. While the fibre addition enhances the viscosity of the melt at lower shear rates, the enhancement at higher shear rate is only marginal. This shows that processing of the composite can be done in a similar way to that of the matrix polymer in high shear operations such as injection moulding. Another significant observation is the decrease in melt viscosity of the composite upon grafting. Thus chemical modification of matrix makes processing of the composite easier in addition to improving the mechanical load bearing capacity.For the development of a useful short fibre composite, selection of proper materials, optimum design with regard to the particular product and choosing proper processing parameters are most essential. Since there is a co-influence of many parameters, analytical solutions are difficult. Hence for selecting proper processing parameters 'rnold flow' software was utilized. The orientation of the fibres, mechanical properties, temperature profile, shrinkage, fill time etc. were determined using the software.Another interesting feature of the nylon fibre/PP and nylon fibre/HDPE composites is their thermal behaviour. Both nylon and PP degrade at the same temperature in single steps and hence the thermal degradation behaviour of the composites is also being predictable. It is observed that the thermal behaviour of the matrix or reinforcement does not affect each other. Almost similar behaviour is observed in the case of nylon fibre/HDPE composites. Another equally significant factor is the nucleating effect of nylon fibre when the composite melt cools down. In the presence of the fibre the onset of crystallization occurs at slightly higher temperature.When the matrix is modified by grafting, the onset of crystallization occurs at still higher temperature. Hence it may be calculated that one reason for the improvement in mechanical behaviour of the composite is the difference in crystallization behaviour of the matrix in presence of the fibre.As mentioned earlier, a major advantage of these composites is their recyclability. Two basic approaches may be employed for recycling namely, low temperature recycling and high temperature recycling. In the low temperature recycling, the recycling is done at a temperature above the melting point of the matrix, but below that of the fibres while in the high temperature route. the recycling is done at a temperature above the melting points of both matrix and fibre. The former is particularly interesting in that the recycled material has equal or even better mechanical properties compared to the initial product. This is possible because the orientation of the fibre can improve with successive recycling. Hence such recycled composites can be used for the same applications for which the original composite was developed. In high temperature recycling, the composite is converted into a blend and hence the properties will be inferior to that of the original composite, but will be higher than that of the matrix material alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this investigation is to study the effectiveness of isora fibre as reinforcement material in short and long forms, for unsaturated polyester and epoxy resins.Studies on the optimization of fibre length and fibre loading of randomly oriented isora-polyester composite are described.The salient features of the alkali treatment of short isora fibre on the properties of randomly oriented isora-polyester composite are outlined in this thesis.The effect of surface modification of the hydrophilic isora fibre by different chemical treatments on the properties of randomly oriented isora-polyester composite is outlined.The properties of oriented and randomly oriented isora fibre reinforced epoxy composites with special reference to the effect of fibre loading are reported and also the dynamic mechanical properties ofthe oriented and randomly oriented isora-polyester and isora-epoxy composites are presented and the water absorption kinetics of oriented and randomly oriented isora-polyester composites and oriented isoraepoxy composites are given. The effect of hot air oven aging on the tensile and flexural properties of oriented isora-polyester and isora-epoxy composites are also reported in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenolic resins suffer from the presence of microvoids on curing. This often leads to less than satisfactory properties in the cured resin. This disadvantage has limited the use of phenolic resins to some extent. This study is an attempt to improve the mechanical properties of the phenolic resol resins by chemical modification aimed at reducing the microvoid population. With this end in view various themoset resins synthesised under predetennined conditions have been employed for modifying phenolic resols. Such resins include unsaturated polyester, epoxy and epoxy novolac prepolymers. The results establish the effectiveness of these resins for improving the mechanical properties of phenolics. Experimental and analytical techniques used include FTIR, DMA, TGA, SEM and mechanical property evaluation. While most of the modifier resins employed give positive results the effect of adding UP is found to be surprising as well as impressive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isora fibre-reinforced natural rubber (NR) composites were cured at 80, 100, 120 and 150°C using a low temperature curing accelerator system. Composites were also prepared using a conventional accelerator system and cured at 150°C. The swelling behavior of these composites at varying fibre loadings was studied in toluene and hexane. Results show that the uptake of solvent and volume fraction of rubber due to swelling was lower for the low temperature cured vulcanizates which is an indication of the better fibre/rubber adhesion. The uptake of aromatic solvent was higher than that of aliphatic solvent, for all the composites. As the fibre content increased, the solvent uptake decreased, due to the superior solvent resistance of the fibre and good fibre-rubber interactions. The bonding agent improved the swelling resistance of the composites due to the strong interfacial adhesion. Due to the improved adhesion between the fibre and rubber, the ratio of the change in volume fraction of rubber due to swelling to the volume fraction of rubber in the dry sample (V,) was found to decrease in the presence of bonding agent. At a fixed fibre loading, the alkali treated fibre composite showed a lower percentage swelling than untreated one for both systems showing superior rubber-fibre interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass fiber reinforced polymer (GFRP) rebars have been identified as an alternate construction material for reinforcing concrete during the last decade primarily due to its strength and durability related characteristics. These materials have strength higher than steel, but exhibit linear stress–strain response up to failure. Furthermore, the modulus of elasticity of GFRP is significantly lower than that of steel. This reduced stiffness often controls the design of the GFRP reinforced concrete elements. In the present investigation, GFRP reinforced beams designed based on limit state principles have been examined to understand their strength and serviceability performance. A block type rotation failure was observed for GFRP reinforced beams, while flexural failure was observed in geometrically similar control beams reinforced with steel rebars. An analytical model has been proposed for strength assessment accounting for the failure pattern observed for GFRP reinforced beams. The serviceability criteria for design of GFRP reinforced beams appear to be governed by maximum crack width. An empirical model has been proposed for predicting the maximum width of the cracks. Deflection of these GFRP rebar reinforced beams has been predicted using an earlier model available in the literature. The results predicted by the analytical model compare well with the experimental data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A/though steel is most commonly used as a reinforcing material in concrete due to its competitive cost and favorable mechanical properties, the problem of corrosion of steel rebars leads to a reduction in life span of the structure and adds to maintenance costs. Many techniques have been developed in recent past to reduce corrosion (galvanizing, epoxy coating, etc.) but none of the solutions seem to be viable as an adequate solution to the corrosion problem. Apart from the use of fiber reinforced polymer (FRP) rebars, hybrid rebars consisting of both FRP and steel are also being tried to overcome the problem of steel corrosion. This paper evaluates the performance of hybrid rebars as longitudinal reinforcement in normal strength concrete beams. Hybrid rebars used in this study essentially consist of glass fiber reinforced polymer (GFRP) strands of 2 mm diameter wound helically on a mild steel core of 6 mm diameter. GFRP stirrups have been used as shear reinforcement. An attempt has been made to evaluate the flexural and shear performance of beams having hybrid rebars in normal strength concrete with and without polypropylene fibers added to the concrete matrix

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The direction dependant wavelength selective transmission mechanism in poly (methyl methacrylate)(PMMA) rods doped with C 540 dye and C 540:Rh.B dye mixture as a combination has been investigated. When a polished slice of pure C 540 doped polymer rod was used side by side with a C540:Rh B doped rod with acceptor concentration [A] = 7x10-4 m/l , we could notice more than 100% change in the transmitted intensity along opposite directions at the C 540, Rh B emission and the excitation wavelengths . A blue high bright LED emitting at a peak wavelength 465nm was used as the excitation source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis describes studies on development of short Nylon-6 fibre composites based on rubber-toughened polystyrene (PS). Toughening was done using natural rubber (NR), styrene-butadiene rubber (SBR) and whole tyre reclaim (WTR). The composites were prepared by melt mixing in an internal mixer at 170 oC. It was found that the optimum blend ratio was 85/15 for PS/NR, 90/10 for PS/SBR and 90/22 for PS/WTR blends. The effect of dynamic vulcanisation on 85/15 PS/NR and 90/10 PS/SBR blends using dicumyl peroxide (DCP) at various concentrations were also studied. The dynamic crosslinking improved the tensile properties, flexural properties, impact strength and dynamic mechanical properties of both the blends. The effect of unmodified and resorcinol formaldehyde latex (RFL)-coated short Nylon-6 fibres on the mechanical properties, morphology and dynamic mechanical properties of 85/15 PS/NR, 90/10 PS/SBR and 90/22 PS/WTR blends were studied. Fibre loading was varied from 0 to 3 wt.%. For 85/15 PS/NR blend, there was a significant enhancement in tensile properties, flexural properties and impact strength with 1 wt.% of both unmodified and RFL-coated fibres. Dynamic mechanical analysis revealed that the storage modulus at room temperature was maximum at 1 wt.% fiber loading for both composites. The surface functionality of the fiber was improved by giving alkali treatment. Maleic anhydride-grafted-polystyrene (MA-g-PS) was prepared and used as a compatibiliser. The effect of MA-g-PS on the composites was investigated with respect to mechanical properties, morphology and dynamic mechanical properties. The compatibiliser loading was varied from 0 to 2 wt.%. The properties were enhanced significantly in the case of treated and untreated fibre composites at a compatibiliser loading of 0.75 wt.%. SEM analysis confirmed better bonding between the fibre and the matrix. Dynamic mechanical studies showed that the storage modulus at room temperature improved for treated fibre composites in the presence of compatibiliser. In the case of 90/10 PS/SBR composites, the addition of short Nylon-6 fibres at 1 wt.% loading improved the tensile modulus, flexural properties and impact strength while the tensile strength was marginally reduced. The surface treated fibers along with compatibiliser at 0.5 wt.% improved the tensile properties, flexural properties and impact strength. DMA reveale that the storage modulus at room temperature was better for composites containing untreated fibre and the compatibiliser. In the case of 90/22 PS/WTR blends, 1 wt.% unmodified fibre and 0.5 wt.% RFL-coated fibres improved tensile modulus, flexural properties and impact strength. Tensile strength was improved marginally. The surface treatment of Nylon fibre and the addition of compatibiliser at 0.5 wt.% enhanced the tensile properties, flexural properties and impact strength. The dynamic mechanical analysis showed that the storage modulus at room temperature was better for untreated fibre composites in conjunction with the compatibiliser. The thermal stability of PS/NR was studied by TGA. Thermal stability of the blends improved with dynamic vulcanisation and with the incorporation of RFL-coated Nylon fibres. The untreated and partially hydrolyzed fibre composites in conjunction with the compatibiliser enhanced the thermal stability. Kinetic studies showed that the degradation of the blends and the composites followed first order kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.