24 resultados para Thermal expansion measurements

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal diffusivity measurements are carried out in certain organic liquids using the pulsed dual beam thermal lens technique. The 532 nm pulses from a frequency doubled Q-switched Nd:YAG laser are used as the heating source and an intensity stabilized He-Ne laser serves as the probe beam. Experimental determination of the characteristic time constant of the transient thermal lens signal is verified theoretically. Measured thermal diffusivity values are in excellent agreement with literature values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical limiting and thermal lensing studies are carried out in C70–toluene solutions. The measurements are performed using 9-ns pulses generated from a frequencydoubled Nd:YAG laser at 532 nm. Optical limiting studies in fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting. Analysis of thermal lensing measurements showed a quadratic dependence of thermal lens signal on incident laser energy, which also supports the view that optical limiting in C70 arises due to sequential two-photon absorption via excited triplet state (reverse saturable absorption).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical limiting and thermo-optic properties of C60 in toluene are studied using 532 nm, 9 ns pulses from a frequency-doubled Nd:YAG laser. Optical limiting studies in these fullerene molecules lead to the conclusion that reverse saturable absorption is the major mechanism for limiting properties in these molecules. Thermal lensing measurements are also performed in fullerene solutions. The quadratic dependence of thermal lens signal on incident energy confirms that enhanced optical absorption by the sample via excited triplet state absorption may play a leading role in the limiting property.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a lowpower, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis entitled "Sol-Gel Alumina Nano Composites for Functional Applications" investigate sol-gel methods of synthesis of alumina nanocomposites special reference to alumina-aluminium titanate and alumina-lanthanum phosphate composites. The functional properties such as thermal expansion coefficient and thermal shock resistance, machinability of composites as well as thermal protection are highlighted in addition to novel approach in synthesis of composites.A general introduction of alumina matrix composites materials, followed by brief coverage of alumina-aluminium titanate and alumina-lanthanum phosphate composites is highlight of the first chapter. The second chapter deals with the sol-gel synthesis of aluminium titanate and alumina-aluminium titanate composite. The synthesis of machinable substrate, based on alumina and lanthanum phosphate forms the basis of the third chapter. The fourth chapter describes the sol-gel coating of mullite on SiC substrate for the possible gas filtration application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lanthanum phosphate is one among the lanthanide family of “Rare Earths” following the periodic table of elements. Known under the generic name, Monazite, the rare earth phosphates have melting points above 1900 °C, high thermal phase stability, low thermal conductivity and thermal expansion coefficient similar to some of the high temperature oxides like alumina and zirconia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly crystalline, ultra fine TiO (anatase) having high surface area has been prepared by thermal hydrolysis of titanyl sulphate 2 solution and characterized using B.E.T surface area measurements, XRD and chemical analysis. The dependence of surface area on concentration of staffing solution, temperature of hydrolysis, duration of boiling and calcination temperature were also studied. As the boiling temperature, duration of boiling and calcination temperature increased, the surface area of TiO formed decreased significantly. 2 On increasing calcination temperature, the crystallite size of TiO also increased and gradually the phase transformation to rutile took 2 place. The onset and completion temperatures of rutilation were 700 and 10008C, respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the measurements of thermal diffusivity of nano Ag metal dispersed ceramic alumina matrix sintered at different temperatures using laser induced non-destructive photoacoustic technique. Measurements of thermal diffusivity also have been carried out on specimens with various concentration of nano metal. Analysis of the data is done on the basis of one-dimensional model of Rosencwaig and Gersho. The present measurements on the thermal diffusivity of nano metal dispersed ceramic alumina shows that porosity has a great influence on the heat transport and the thermal diffusivity value. The present analysis also shows that the inclusion of nano metal into ceramic matrix increases its interconnectivity and hence the thermal diffusivity value. The present study on the samples sintered at different temperature shows that the porosity of the ceramics varies considerably with the change in sintering temperature. The results are interpreted in terms of phonon assisted heat transfer mechanism and the exclusion of pores with the increase in sintering temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal diffusivity of the composites of camphor sulphonic acid (CSA) doped polyaniline (PANI) and its composites with cobalt phthalocyanine (CoPc) has been measured using open cell photoacoustic technique. Analysis of the data shows that the effective thermal diffusivity value can be tuned by varying the relative volume fraction of the constituents. It is seen that polaron assisted heat transfer mechanism is dominant in CSA doped PANI and these composites exhibit a thermal diffusivity value which is intermediate to that of CSA doped PANI and CoPc. The results obtained are correlated with the electrical conductivity and hardness measurements carried out on the samples