2 resultados para TILTED ALGEBRAS
em Cochin University of Science
Resumo:
Mathematicians who make significant contributions towards development of mathematical science are not getting the recognition they deserve, according to Cusat Vice Chancellor Dr. J. Letha. She was delivering the inaugural address at the International Conference on Semigroups, Algebras and Applications (ICSA 2015) organized by Dept. of Mathematics, Cochin university of Science and Technology on Thursday. Mathematics plays an important role in the development of basic science. The academic community should not delay in accepting and appreciating this, Dr. Letha added. Dr. Godfrey Louis, Dean, Faculty of Science presided over the inaugural function. Prof. P. G. Romeo, Head, Dept. of Mathematics, Prof. John C. Meakin, University of Nebraska-Lincoln, USA, Prof. A. N. Balchand, Syndicate Member, Prof. K. A. Zakkariya, Syndicate Member, Prof. A. R. Rajan, Emeritus Professor, University of Kerala and Prof. A. Vijayakumar, Dept. of Mathematics, Cusat addressed the gathering. Around 50 research papers will be presented at the Conference.Prof. K. S. S. Nambooripad, the internationally famous mathematician with enormous contributions in the field of semigroup theory, who has attained eighty years of age will be felicitated on 18th at 5.00 pm during a function presided over by Dr. K. Poulose Jacob, Pro-Vice Chancellor. Dr. Suresh Das, Executive President, KSCSTE, Dr. A. M. Mathai, Director, CMSS and President, Indian Mathematical Society, Dr. P. G. Romeo, Head, Dept. of Mathematics and Dr. B. Lakshmi, Dept. of Mathematics will speak on the occasion.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.