9 resultados para TELECOMMUNICATION
em Cochin University of Science
Resumo:
Microwave ceramic dielectric materials Ca5Nb2TiO12 and Ca5Ta2TiO12 have been prepared by a conventional solid-state ceramic process. The structure was studied by X-ray diffraction and the dielectric properties were characterized at microwave frequencies. The ceramics posses a relatively high dielectric constant, very low dielectric loss (Q5 x f > 30000GHz) and small temperature variation of resonant frequency. These materials are potential candidates for dielectric resonator applications in microwave integrated circuits. [DOI: 10. 1 143/JJAP.41.3834]
Resumo:
rectangular low-density, high-permittivity dielectric resona or antenna (DRA) excited by T-shaped microstrip feed offering a 2:1 VSWR bandwidth of -22% at 2.975 GHz is reported. The design methoaology and experimental results of the antenna are discussed. The excellent gain and radiation performance of the proposed antenna project: it as a potential candidate for telecommunication applications
Resumo:
Preparation of an appropriate optical-fiber preform is vital for the fabrication of graded-index polymer optical fibers (GIPOF), which are considered to be a good choice for providing inexpensive high bandwidth data links, for local area networks and telecommunication applications. Recent development of the interfacial gel polymerization technique has caused a dramatic reduction in the total attenuation in GIPOF, and this is one of the potential methods to prepare fiber preforms for the fabrication of dye-doped polymer-fiber amplifiers. In this paper, the preparation of a dye-doped graded-index poly(methyl methacrylate) (PMMA) rod by the interfacial gel polymerization method using a PMMA tube is reported. An organic compound of high-refractive index, viz., diphenyl phthalate (DPP), was used to obtain a graded-index distribution, and Rhodamine B (Rh B), was used to dope the PMMA rod. The refractive index profile of the rod was measured using an interferometric technique and the index exponent was estimated. The single pass gain of the rod was measured at a pump wavelength of 532 nm. The extent of doping of the Rh B in the preform was studied by axially exciting a thin slice of the rod with white light and measuring the spatial variation of the fluorescence intensity across the sample.
Resumo:
Although the main application of optical fibers are in the field of telecommunication, optical fiber based sensors of various designs are becoming valuable devices for wide industrial applications. The advantages of optical fiber-based sensors include high sensitivity, insensitivity to electromagnetic radiation; spark free, light weight and minimal intrusiveness due to their relatively small size and deployment in harsh and hostile environments. It has been proved that POI-7 based sensors can be employed to detect a great variety of parameters including temperature, humidity, pressure, refractive index etc. The proposed thesis presented in six chapters deals with the work carried on dye doped and undoped POF for photonic device applications such as amplifier, laser and sensor
Resumo:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.
Resumo:
The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. A multi-standard design often involves extensive system level analysis and architectural partitioning, typically requiring extensive calculations. In this research, a decimation filter design tool for wireless communication standards consisting of GSM, WCDMA, WLANa, WLANb, WLANg and WiMAX is developed in MATLAB® using GUIDE environment for visual analysis. The user can select a required wireless communication standard, and obtain the corresponding multistage decimation filter implementation using this toolbox. The toolbox helps the user or design engineer to perform a quick design and analysis of decimation filter for multiple standards without doing extensive calculation of the underlying methods.
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. In multistandard design, sigma-delta based ADC is one of the most popular choices. To this end, in this paper we present cascaded 2-2-2 reconfigurable sigma-delta modulator that can handle GSM, WCDMA and WLAN standards. The modulator makes use of a low-distortion swing suppression topology which is highly suitable for wide band applications. In GSM mode, only the first stage (2nd order Σ-Δ ADC) is used to achieve a peak SNDR of 88dB with oversampling ratio of 160 for a bandwidth of 200KHz and for WCDMA mode a 2-2 cascaded structure (4th order) is turned on with 1-bit in the first stage and 2-bit in the second stage to achieve 74 dB peak SNDR with over-sampling ratio of 16 for a bandwidth of 2MHz. Finally, a 2-2-2 cascaded MASH architecture with 4-bit in the last stage is proposed to achieve a peak SNDR of 58dB for WLAN for a bandwidth of 20MHz. The novelty lies in the fact that unused blocks of second and third stages can be made inactive to achieve low power consumption. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8 supply voltage
Resumo:
Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising