5 resultados para Synthetic drugs.
em Cochin University of Science
Resumo:
The synthesis and reactions of simple derivatives of 2(3H)- and 3(2H)furanones have attracted considerable attention in recent years, primarily in connection with development of routes to antitumor agents that contain this ring as central structural unit. They also serve as useful synthetic building blocks for lactones and furans and are the precursors of a wide variety of biologically important heterocyclic systems. Although a number of syntheses of furanones were known they were in many cases limited to specific substitution pattems. The development of altemative strategies for the preparation of these heterocycles is therefore of considerable importance or continues to be a challenge.We propose to develop new and general approaches to the synthesis of furanone ring systems from simple and readily available starting materials since we were interested in examining their rich photochemistry. The photochemical reactivity of Beta,gama-unsaturated lactams and lactones is a subject of current interest. Some of the prominent photoreaction pathways of unsaturated lactones include decarbonylation, solvent addition to double bonds, decarboxylation, migration of aryl substituents and dimerisation. lt was reported earlier that the critical requirement for clean photochemical cleavage of the acyl-oxygen bond is the presence ofa double bond adjacent to the ether oxygen and 2(3H)-furanones possessing this structural requirement undergo facile decarbonylation. But related phenanthrofuranones are isolated as photostable end products upon irradiation. Hence we propose to synthesis a few phenanthro-2(3H)-furanones to study the effect of a radical stabilising group at 3-position of furanone ring on photolysis. To explore the tripletmediated transformations of 2(3H)-furanones in polar and nonpolar solvents a few 3,3-bis(4-chlorophenyl)-5-aryl-3H-furan-2-ones and 3,3-di(p-tolyl)-5-aryl- 3H-furan-2-ones were synthesised from the corresponding dibenzoylstyrene precursors by neat thermolysis. Our aim was to study the nature of intermediates involved in these transformations.We also explored the possibility of developing a new and general approach to the synthesis of 3(2H)-furanones from simple and readily available starting materials since such general procedures are not available. The protocol developed by us employs readily available phenanthrenequinone and various 4-substituted acetophenones as starting materials and provides easy access to the required 3(2H)-furanone targets. These furanone derivatives have immense potential for further investigations .We also aimed the synthesis of a few dibenzoylalkene-type systems such as acenaphthenone-2—ylidene ketones and phenanthrenone-9-ylidene ketones. These systems were expected to undergo thermal rearrangement to give furanones and spirofuranones. Also these systems can be categorised as quinonemethides which are valuable synthetic intermediates.
Resumo:
Aquaculture is a form of agriculture that involves the propagation, cultivation and marketing of aquatic plants and animals in a controlled environment (Swann, 1992). After growing steadily, particularly in the last four decades, aquaculture is for the first time set to contribute half of the fish consumed by the human population worldwide. Given the projected population growth over the next two decades, it is estimated that at least an additional 40 million tonnes of aquatic food will be required by 2030 to maintain the current per capita consumption (FAO, 2006). Capture fisheries and aquaculture supplied the world with about 110 million tonnes of food fish in 2006. Of this total, aquaculture accounted for 47 percent (FAO, 2009). Globally, penaeid shrimp culture ranks sixth in terms of quantity and second in terms of value amongst all taxonomic groups of aquatic animals cultivated (FAO, 2006). In places where warm-water aquaculture was possible black tiger shrimp, Penaeus monodon became the preferred variety of shrimp cultivar owing to its fast growth, seed availability and importantly due to high prices it fetches (Pechmanee, 1997). World shrimp production is dominated by P.monodon, which accounted for more than 50 % of the production in 1999 (FAO, 2000). In the last few years the whiteleg shrimp, Litopenaeus vannamei, has replaced P.monodon in many countries. Indian shrimp culture is dominated by P.monodon with the East Coast accounting for 70% of the production (Hein, 2002). Intensive culture, apart from other problems, results in enhanced susceptibility of the cultured species to diseases (Jory, 1997), which in fact have become the biggest constraint in shrimp aquaculture (FAO, 2003).
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
Several natural and synthetic supports have been assessed for their efficiency for enzyme immobilization. Synthetic polymer materials are prepared by chemical polymerization using various monomers. As a kind of important carrier, synthetic polymer materials exhibit the advantages of good mechanical rigidity, high specific surface area, inertness to microbial attack, easy to change their surface characteristics, and their potential for bringing specific functional group according to actual needs. Hence, they have been widely investigated and used for enzyme immobilization. When it comes to the natural polymer materials, much attention has been paid to cellulose and other natural polymer materials owing to their wide range of sources, easy modification, nontoxic, and pollution-free, with a possibility of introducing wide variety of functional groups and good biocompatible properties. In this work report the use of synthetic polymer, polypyrrole and its derivatives and natural polymers coconut fiber and sugarcane bagasse as supports for Diastase α- amylase immobilization. An attempt was also made to functionalize both synthetic and natural polymers using Amino-propyl triethoxysilane. Supports and their immobilized forms were characterized via FT-IR, TG, SEM, XRD, BET and EDS techniques. Immobilization parameters were also optimized so as to prepare stable immobilized biocatalyst for starch hydrolysis.