8 resultados para Surface-areas
em Cochin University of Science
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 °C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brφnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity.
Resumo:
Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications.
Resumo:
The purpose of the present study is to understand the surface deformation associated with the Killari and Wadakkancheri earthquake and to examine if there are any evidence of occurrence of paleo-earthquakes in this region or its vicinity. The present study is an attempt to characterize active tectonic structures from two areas within penisular India: the sites of 1993 Killari (Latur) (Mb 6.3) and 1994 Wadakkancheri (M 4.3) earthquakes in the Precambrian shield. The main objectives of the study are to isolate structures related to active tectonism, constraint the style of near – surface deformation and identify previous events by interpreting the deformational features. The study indicates the existence of a NW-SE trending pre-existing fault, passing through the epicentral area of the 1993 Killari earthquake. It presents the salient features obtained during the field investigations in and around the rupture zone. Details of mapping of the scrap, trenching, and shallow drilling are discussed here. It presents the geologic and tectonic settings of the Wadakkancheri area and the local seismicity; interpretation of remote sensing data and a detailed geomorphic analysis. Quantitative geomorphic analysis around the epicenter of the Wadakkancheri earthquake indicates suitable neotectonic rejuvenation. Evaluation of remote sensing data shows distinct linear features including the presence of potentially active WNW-ESE trending fault within the Precambrian shear zone. The study concludes that the earthquakes in the shield area are mostly associated with discrete faults that are developed in association with the preexisting shear zones or structurally weak zones
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.
Resumo:
The intention of the present thesis work is to understand the physical processes responsible for climatic variability and predictability of the Indian subcontinent. The study is expected to delineate and emphasize the various boundaries and areas of transition and bring out the regional and temporal characteristics of the meteorological distribution of the country. The results obtained from the study is expected to provide a better understanding the physics of Indian cl imate, which can be incorporated for numerical weather prediction. The results obtained from the present study can be incorporated for climate modelling and long-term prediction of the meteorological parameters over Indian subcontinent
Resumo:
The present study deals with the different hydrogeological characteristics of the coastal region of central Kerala and a comparative analysis with corresponding hard rock terrain. The coastal regions lie in areas where the aquifer systems discharge groundwater ultimately into the sea. Groundwater development in such regions will require a precise understanding of the complex mechanism of the saline and fresh water relationship, so that the withdrawals are so regulated as to avoid situations leading to upcoming of the saline groundwater bodies as also to prevent migration of sea water ingress further inland. Coastal tracts of Kerala are formed by several drainage systems. Thick pile of semi-consolidated and consolidated sediments from Tertiary to Recent age underlies it. These sediments comprise phreatic and confined aquifer systems. The corresponding hard rock terrain is encountered with laterites and underlined by the Precambrian metamorphic rocks. Supply of water from hard rock terrain is rather limited. This may be due to the small pore size, low degree of interconnectivity and low extent of weathering of the country rocks. The groundwater storage is mostly controlled by the thickness and hydrological properties of the weathered zone and the aquifer geometry. The over exploitation of groundwater, beyond the ‘safe yield’ limit, cause undesirable effects like continuous reduction in groundwater levels, reduction in river flows, reduction in wetland surface, degradation of groundwater quality and many other environmental problems like drought, famine etc.
Resumo:
Urbanization refers to the process in which an increasing proportion of a population lives in cities and suburbs. Urbanization fuels the alteration of the Land use/Land cover pattern of the region including increase in built-up area, leading to imperviousness of the ground surface. With increasing urbanization and population pressures; the impervious areas in the cities are increasing fast. An impervious surface refers to an anthropogenic ally modified surface that prevents water from infiltrating into the soil. Surface imperviousness mapping is important for the studies related to water cycling, water quality, soil erosion, flood water drainage, non-point source pollution, urban heat island effect and urban hydrology. The present study estimates the Total Impervious Area (TIA) of the city of Kochi using high resolution satellite image (LISS IV, 5m. resolution). Additionally the study maps the Effective Impervious Area (EIA) by coupling the capabilities of GIS and Remote Sensing. Land use/Land cover map of the study area was prepared from the LISS IV image acquired for the year 2012. The classes were merged to prepare a map showing pervious and impervious area. Supervised Maximum Likelihood Classification (Supervised MLC),which is a simple but accurate method for image classification, is used in calculating TIA and an overall classification accuracy of 86.33% was obtained. Water bodies are 100% pervious, whereas urban built up area are 100% impervious. Further based on percentage of imperviousness, the Total Impervious Area is categorized into various classes