11 resultados para Surface conditioning methods
em Cochin University of Science
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
The thesis aims to present the results of experimental investigations on the changes of optical properties of metallic thin films due to heating. The parameters which are measured are reflectivity, refractive indices and the ellipsometric quantities V and A . The materials used in the studies are metals like Silver, Aluminium and Copper. By applying the optical method the interdiffusion taking place in multilayer ‘films of Aluminium and Silver has also been studied. Special interest has been taken to reveal the mechanisms of the hillock growth and surface roughness caused by heating and their relation with the stress in the film
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
The incorporation of transition metal oxide pillars such as those of iron and chromium along with Al2O3, pillars within the interlayers of a montmorillonite clay is investigated. The surface acidity of these catalysts has been evaluated for the first time employing the equilibrium adsorption of an electron donor, perylene, and the results are compared with those obtained by temperature programmed desorption of ammonia. The principle is based on the ability of a catalyst surface site to accept a single electron from an electron donor like perylene to form charge transfer complexes and the amount of adsorbed species is measured quantitatively by UV-vis spectroscopy. Fina1ly, an attempt has been made to correlate the acidity determined by the two independcnt methods and the catalytic activity of present systems in the benzoylation of toluene with benzoyl chloride. Incorporation of Fe and Cr has changed the properties of AI pitlared montmorillonite. Fe pillared systems have been found to be vcry good catalysts for benzoylation reaction
Resumo:
The present study describes the surface properties and catalytic activities of ferrospinels containing Co, Ni and Cu prepared by the low temperature route. Various physico-chemical methods have been adopted to characterise the systems. The reactions carried out are the Friedel-Crafts benzoylation of aromatics and the cyclohexanol decomposition. We have attempted the sulphate modification of the ferrites and have studied the surface and catalytic properties of the sulphated analogues.The work is presented in six chapters, the last chapter giving the summary and conclusions of the results presented earlier. Our samples prove as potential catalysts for the benzoylation of aromatics , for which truly heterogeneous catalysts are rare. Again , the materials show remarkable dehydration/dehydrogenation activities during cyclohexanol decomposition. There is plenty of scope for research in this field, especially in the development of environmentally benign catalysts for acylation reactions.
Resumo:
Preparation of simple and mixed ferrospinels of nickel, cobalt and copper and their sulphated analogues by the room temperature coprecipitation method yielded fine particles with high surface areas. Study of the vapour phase decomposition of cyclohexanol at 300 °C over all the ferrospinel systems showed very good conversions yielding cyclohexene by dehydration and/or cyclohexanone by dehydrogenation, as the major products. Sulphation very much enhanced the dehydration activity over all the samples. A good correlation was obtained between the dehydration activities of the simple ferrites and their weak plus medium strength acidities (usually of the Brφnsted type) determined independently by the n-butylamine adsorption and ammonia-TPD methods. Mixed ferrites containing copper showed a general decrease in acidities and a drastic decrease in dehydration activities. There was no general correlation between the basicity parameters obtained by electron donor studies and the ratio of dehydrogenation to dehydration activities. There was a leap in the dehydrogenation activities in the case of all the ferrospinel samples containing copper. Along with the basic properties, the redox properties of copper ion have been invoked to account for this added activity.
Resumo:
The rare earths have provided fascinating field for chemists confronted with problems of their separation and purification. The rare earths become available in relatively pure form in recent years due to the development of efficient separation methods, largely as a byproduct of the atomic energy programmes of various countries. The rare earths often called lanthanides from La (Z=57) to Lu (Z=7l) display subtle variation of properties through the series, while the differences become appreciable for the elements that are farther apart.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics
Resumo:
Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion
Resumo:
This paper presents the optimal design of a surface mounted permanent-magnet (PM) Brushless direct-current (BLDC) motor meant for spacecraft applications. The spacecraft applications requires the choice of a motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine configurations viz Slotted PMBLDC and Slotless PMBLDC with Halbach array are compared with the help of analytical and finite element (FE) methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with Halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction