39 resultados para Summer monsoon

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the onset of southwest monsoon over Kerala. India Meteorological Department (IMD) has been using a semi-objective method to define monsoon onset. The main objectives of the study are to understand the monsoon onset processes, to simulate monsoon onset in a GCM using as input the atmospheric conditions and Sea Surface Temperature, 10 days earlier to the onset, to develop a method for medium range prediction of the date of onset of southwest monsoon over Kerala and to examine the possibility of objectively defining the date of Monsoon Onset over Kerala (MOK). It gives a broad description of regional monsoon systems and monsoon onsets over Asia and Australia. Asian monsoon includes two separate subsystems, Indain monsoon and East Asian monsoon. It is seen from this study that the duration of the different phases of the onset process are dependent on the period of ISO. Based on the study of the monsoon onset process, modeling studies can be done for better understanding of the ocean-atmosphere interaction especially those associated with the warm pool in the Bay of Bengal and the Arabian Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the characteristics of the upper troposphere and lower stratosphere over the Asian summer monsoon region, more specifically over the Indian subcontinent. Mainly three important parameters are taken such as zonal wind, temperature and ozone over the UT/LS of the Asian summer monsoon region. It made a detailed study of its interannual variability and characteristics of theses parameters during the Indian summer monsoon period. Monthly values of zonal wind and temperature from the NCEP/NCAR reanalysis for the period 1960-2002 are used for the present study. Also the daily overpass total ozone data for the 12 Indian stations (from low latitude to high latitudes) from the TOMS Nimbus 7 satellite for the period 1979 to 1992 were also used to understand the total ozone variation over the Indian region. The study reveals that if QBO phases in the stratosphere is easterly or weak westerly then the respective monsoon is found to be DRY or below Normal . On the other hand, if the phase is westerly or weak easterly the respective Indian summer monsoon is noted as a WET year. This connection of stratospheric QBO phases and Indian summer monsoon gives more insight in to the long-term predictions of Indian summer monsoon rainfall. Wavelet analysis and EOF methods are the two advanced statistical techniques used in the present study to explore more information of the zonal wind that from the smaller scale to higher scale variability over the Asian summer monsoon region. The interannual variability of temperature for different stratospheric and tropospheric levels over the Asian summer monsoon region have been studied. An attempt has been made to understand the total ozone characteristics and its interannual variablilty over 12 Indian stations spread from south latitudes to north latitudes. Finally it found that the upper troposphere and lower stratosphere contribute significantly to monsoon variability and climate changes. It is also observed that there exists a link between the stratospheric QBO and Indian summer monsoon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study illustrates the biennial oscillation in different ocean-atmosphere parameters associated with interannual variability of Indian summer monsoon rainfall.It also accounts the role of different processes like ENSO, IOD, QBO and ISO in the monsoon variability during the TBO years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis entitled southern hemispheric features and their Teleconnection with indian summer monsoon.Southern hemisphere is entirely distinct from the northern hemisphere in many aspects, which is well reflected in atmospheric and oceanic properties.The thesis consists of eight chapters, in which the first chapter contains an overview of southern hemisphere. In this chapter, variability in southern hemisphere is described along with Indian summer monsoon and its teleconnection. The different types of data sets used and various methodologies adopted in the present thesis were described in Chapter 2. The period of climate shift and the magnitude of anomalies after the climate shift, which extended from troposphere to stratopause level, were investigated in detail and presented in chapter 3. Chapter 4 depicts the recent trend and variability in southern stratosphere. The higher order variability during various months and the frequency of extremity is included in this chapter.Climatology of divergence and convergence after the documented shift is reported in chapter 5.Southern extratropical connection to Indian summer monsoon through the modulation of SAM is presented in Chapter 6.Chapter 7 deals with the modulation of SAM‐Monsoon link through North Atlantic Oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25 C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study focuses on the south –west monsoon rainfall over Kerala and its variability both on the spatial and temporal scales. The main objectives of the study are, interanual, long-term and decadal variabilities in MRF(monsoon rain fall),relationship between antecedent global circulation parameters, diurnal variability using data of a large number of stations in Kerala and the spatial distribution of rainfall under two large scale synoptic. Kerala gets nearly 190cm of rainfall during the south-west monsoon season 1st June to 30th September. This is more than twice the monsoon rainfall of India. A good part of kerala’s rainfall is caused by the orography of the Western Ghats Mountain ranges. The state receives 286cm of annual rainfall of which 68%is during the south-west monsoon season. The summer monsoon rainfall of Kerala shows a decreasing trend of 12.0%in 96 years. The study shows that the Intra Seasonal Oscillations(ISO) of the monsoon season has large interanual variability,some years having long period and other years having short period ISO. It is seen that Western Ghats has a strong control on the east west profile on the monsoon rainfall.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied sea surface temperature (SST) anomalies over the Indian and Pacific Oceans (domain 25 °S to 25°N and 40 °E to 160 °W) during the three seasons following the Indian summer monsoon for wet monsoons and also for dry monsoons accompanied or not by El Ni˜no. A dry monsoon is followed by positive SST anomalies in the longitude belt 40 to 120 °E, negative anomalies in 120 to 160 °E and again positive anomalies east of 160 °E. In dry monsoons accompanied by El Ni˜no the anomalies have the same sign, but are much stronger. Wet monsoons have weak anomalies of opposite sign in all three of the longitude belts. Thus El Ni˜no and a dry monsoon have the same types of association with the Indian and Pacific Ocean SSTs. In the sector 40 to 120 °E SST anomalies first appear over the western part of the Indian Ocean (June to September) followed by the same sign of anomalies over its eastern part and China Sea (October to March). By March after a dry monsoon or El Ni˜no the Indian Ocean between 10 °N and 10 °S has a spatially large warm SST anomaly. Anomalies in deep convection tend to follow the SST anomalies, with warm SST anomalies producing positive convection anomalies around the seasonal location of the intertropical convergence zone

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study is to understand the biennial scale stratosphere-troposphere interactions over India, and synoptic to interannual timescale meridional stratosphere-troposhere exchanges caused by upper tropospheric/lower stratospheric longwaves using NCEP/NCAR reanalysis data and satellite measured total ozone data. The biennial timescale interaction between lower stratosphere and troposphere over Thumba is analysed using high-resolution radiosonde data. The results suggest that TBO and QBO are two different phenomena with nearly biennial periodicity. Interannual timescale meridional stratosphere-troposphere exchanges caused by the newly documented Asia Pacific Wave (APW) were analysed using ozone as tracer of atmospheric motion. Synoptic timescale meridional stratosphere-troposhere exchanges caused by subtropical upper tropospheric long waves over Asia were studied using global total ozone measurements from TOMS. This research work can be extended to study the influence of decadal scale epochal nature in Indian summer monsoon activity on the APW generated total ozone anomalies around the globe and the trend estimates in total ozone

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study is undertaken with an objective to investigate the linkage between air-sea fluxes in the Indian Ocean and monsoon forcing. Since the monsoon activity is linked to fluxes, the variability of surface marine meteorological fields under the variable monsoon conditions is also studied. The very objective of the present study is to document various sea surface parameters of the Indian Ocean and to examine the anomalies found in them. Hence it is attempted to relate the anomaly to the variability of monsoon over India, highlighting the occasion of contrasting monsoon periods. The analysis of anomalies of surface meteorological fields such as SST, wind speed and direction, sea level pressure and cloud cover for contrasting monsoons are also studied. During good monsoon years, the pressure anomalies are negative indicating a fall in SLP during pre-monsoon and monsoon months. The interaction of the marine atmosphere with tropical Indian Ocean and its influence on ISMR continue to be an area of active research.