3 resultados para Sugar Phosphates

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in the thesis is centered around two important types of cathode materials, the spinel structured LixMn204 (x =0.8to1.2) and the phospho -oIivine structured LiMP04 (M=Fe and Ni). The spinel system LixMn204, especially LiMn204 corresponding to x= 1 has been extensively investigated to understand its structural electrical and electrochemical properties and to analyse its suitability as a cathode material in rechargeable lithium batteries. However there is no reported work on the thermal and optical properties of this important cathode material. Thermal diffusivity is an important parameter as far as the operation of a rechargeable battery is concerned. In LixMn204, the electronic structure and phenomenon of Jahn-Teller distortion have already been established theoretically and experimentally. Part of the present work is an attempt to use the non-destructive technique (NDT) of photoacoustic spectroscopy to investigate the nature of the various electronic transitions and to unravel the mechanisms leading to the phenomenon of J.T distortion in LixMn204.The phospho-olivines LiMP04 (M=Fe, Ni, Mn, Co etc) are the newly identified, prospective cathode materials offering extremely high stability, quite high theoretical specific capacity, very good cycIability and long life. Inspite of all these advantages, most of the phospho - olivines especially LiFeP04 and LiNiP04 show poor electronic conductivity compared to LixMn204, leading to low rate capacity and energy density. In the present work attempts have been made to improve the electronic conductivity of LiFeP04 and LiNiP04 by adding different weight percentage MWNT .It is expected that the addition of MWNT will enhance the electronic conductivity of LiFeP04 and LiNiP04 with out causing any significant structural distortions, which is important in the working of the lithium ion battery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and infrared spectra of Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7 are reported. The observed bands are assigned in terms of vibrations of NbO6 octahedra and PO4 tetrahedra in the first two compounds and in terms of NbO6 octahedra and P2O7 4− anion in the third compound. The NbO6 octahedra in all the title compounds are found to be corner-shared and distorted. The higher wavenumber values of the ν1 (NbO6) mode and other stretching modes indicate that the NbO6 octahedra in them are distorted in the order TlNbOP2O7 > Tl2NbO2PO4 > Tl3NaNb4O9(PO4)2. The splitting of the ν3 (PO4) mode indicates that PO4 tetrahedra is distorted more in Tl2NbO2PO4 than in Tl3NaNb4O9(PO4)2. The symmetry of P2O7 4− anion in TlNbOP2O7 is lowered. Bands indicate that the P–O–P bridge in the above compound has a bent P–O–P bridge configuration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FT-Raman and FT-IR spectra of ASnFe(PO4)3 [A=Na2, Ca, Cd] were recorded and analyzed. The bands were assigned in terms of the vibrational group frequencies of SnO6 octahedral and PO4 tetrahedral. The spectral analysis shows that the symmetry of corner shared octahedral (SnO6) and the tetrahedral (PO4) are lowered from their free ion symmetry state. The presence of Fe3+ ions disrupts the S–N–O–S–N chain in the structure. This causes distortion of SnO6 and PO4 in the structure of all the compounds. Also it is seen that there are two distinct PO4 tetrahedra of different P–O bond lengths. One of these tetrahedra is linearly distorted in all the title compounds. The PO4 frequencies and bond lengths are calculated theoretically and are in agreement with the experimental values. The presence of PO4 polyanion in the structure can reduce the redox energy and hence reduce the metal oxygen covalency strength in the structure