4 resultados para Substitutions

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal diffusivities of some polystyrene supported Schiff complexes of Co(II) and Cu(II) were determined by the laser induced photoacoustic technique. The effect of metal as well as the halogen part on thermal diffusivity of polymer supported complexes was studied. The thermal diffusivity of Co complexes increases while it decreases in Cu complexes with Cl, Br and I substitutions, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the microwave dielectric properties of two novel dielectric resonator materials with the composition Ca(Ca1/4Nb2/4Ti1/4)O3 and Ca(Ca1/4Ta2/4Ti1/4)O3 ceramics and their application in the fabrication of wideband antennas. The microwave dielectric properties of the ceramics were tailored by several techniques such as doping, glass addition and solid solution formations in the complex perovskite A and B-sites with suitable substitutions. Among the wide variety of DRs developed, ceramic resonators with optimum properties were identified to fabricate broadband dielectric resonator loaded microstrip patch antennas. Furthermore, wideband, high permittivity dielectric resonator antennas were fabricated and explored the possibility of tuning their characteristics by modifying the feed line geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis work focuses on hole doped lanthanum manganites and their thin film forms. Hole doped lanthanum manganites with higher substitutions of sodium are seldom reported in literature. Such high sodium substituted lanthanum manganites are synthesized and a detailed investigation on their structural and magnetic properties is carried out. Magnetic nature of these materials near room temperature is investigated explicitly. Magneto caloric application potential of these materials are also investigated. After a thorough investigation of the bulk samples, thin films of the bulk counterparts are also investigated. A magnetoelectric composite with ferroelectric and ferromagnetic components is developed using pulsed laser deposition and the variation in the magnetic and electric properties are investigated. It is established that such a composite could be realized as a potential field effect device. The central theme of this thesis is also on manganites and is with the twin objectives of a material study leading to the demonstration of a device. This is taken up for investigation. Sincere efforts are made to synthesize phase pure compounds. Their structural evaluation, compositional verification and evaluation of ferroelectric and ferromagnetic properties are also taken up. Thus the focus of this investigation is related to the investigation of a magnetoelectric and magnetocaloric application potentials of doped lanthanum manganites with sodium substitution. Bulk samples of sodium substituted lanthanum manganites. Bulk samples of sodium substituted lanthanum manganites with Na substitution ranging from 50 percent to 90 percent were synthesized using a modified citrate gel method and were found to be orthorhombic in structure belonging to a pbnm spacegroup. The variation in lattice parameters and unit cell volume with sodium concentration were also dealt with. Magnetic measurements revealed that magnetization decreased with increase in sodium concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.