8 resultados para Structural hot spot stress

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Influence of acute salinity stress on the immunological and physiological response of Penaeus monodon to white spot syndrome virus (WSSV) infection was analysed. P. monodon maintained at 15‰ were subjected to acute salinity changes to 0‰ and 35‰ in 7 h and then challenged orally with WSSV. Immune variables viz., total haemocyte count, phenol oxidase activity (PO), nitroblue tetrazolium salt (NBT) reduction, alkaline phosphatase activity (ALP), acid phosphatase activity (ACP) and metabolic variables viz., total protein, total carbohydrates, total free amino acids (TFAA), total lipids, glucose and cholesterol were determined soon after salinity change and on post challenge days 2 (PCD2) and 5 (PCD5). Acute salinity change induced an increase in metabolic variables in shrimps at 35‰ except TFAA. Immune variables reduced significantly (Pb0.05) in shrimps subjected to salinity stress with the exception of ALP and PO at 35‰ and the reduction was found to be more at 0‰. Better performance of metabolic and immune variables in general could be observed in shrimps maintained at 15‰ that showed significantly higher post challenge survival following infection compared to those under salinity stress. Stress was found to be higher in shrimps subjected to salinity change to lower level (0‰) than to higher level (35‰) as being evidenced by the better immune response and survival at 35‰. THC (Pb0.001), ALP (Pb0.01) and PO (Pb0.05) that together explained a greater percentage of variability in survival rate, could be proposed as the most potential health indicators in shrimp haemolymph. It can be concluded from the study that acute salinity stress induces alterations in the haemolymph metabolic and immune variables of P. monodon affecting the immunocompetence and increasing susceptibility to WSSV, particularly at low salinity stress conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many finite elements used in structural analysis possess deficiencies like shear locking, incompressibility locking, poor stress predictions within the element domain, violent stress oscillation, poor convergence etc. An approach that can probably overcome many of these problems would be to consider elements in which the assumed displacement functions satisfy the equations of stress field equilibrium. In this method, the finite element will not only have nodal equilibrium of forces, but also have inner stress field equilibrium. The displacement interpolation functions inside each individual element are truncated polynomial solutions of differential equations. Such elements are likely to give better solutions than the existing elements.In this thesis, a new family of finite elements in which the assumed displacement function satisfies the differential equations of stress field equilibrium is proposed. A general procedure for constructing the displacement functions and use of these functions in the generation of elemental stiffness matrices has been developed. The approach to develop field equilibrium elements is quite general and various elements to analyse different types of structures can be formulated from corresponding stress field equilibrium equations. Using this procedure, a nine node quadrilateral element SFCNQ for plane stress analysis, a sixteen node solid element SFCSS for three dimensional stress analysis and a four node quadrilateral element SFCFP for plate bending problems have been formulated.For implementing these elements, computer programs based on modular concepts have been developed. Numerical investigations on the performance of these elements have been carried out through standard test problems for validation purpose. Comparisons involving theoretical closed form solutions as well as results obtained with existing finite elements have also been made. It is found that the new elements perform well in all the situations considered. Solutions in all the cases converge correctly to the exact values. In many cases, convergence is faster when compared with other existing finite elements. The behaviour of field consistent elements would definitely generate a great deal of interest amongst the users of the finite elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occupational stress is becoming a major issue in both corporate and social agenda .In industrialized countries, there have been quite dramatic changes in the conditions at work, during the last decade ,caused by economic, social and technical development. As a consequence, the people today at work are exposed to high quantitative and qualitative demands as well as hard competition caused by global economy. A recent report says that ailments due to work related stress is likely to cost India’s exchequer around 72000 crores between 2009 and 2015. Though India is a fast developing country, it is yet to create facilities to mitigate the adverse effects of work stress, more over only little efforts have been made to assess the work related stress.In the absence of well defined standards to assess the work related stress in India, an attempt is made in this direction to develop the factors for the evaluation of work stress. Accordingly, with the help of existing literature and in consultation with the safety experts, seven factors for the evaluation of work stress is developed. An instrument ( Questionnaire) was developed using these seven factors for the evaluation of work stress .The validity , and unidimensionality of the questionnaire was ensured by confirmatory factor analysis. The reliability of the questionnaire was ensured before administration. While analyzing the relation ship between the variables, it is noted that no relationship exists between them, and hence the above factors are treated as independent factors/ variables for the purpose of research .Initially five profit making manufacturing industries, under public sector in the state of Kerala, were selected for the study. The influence of factors responsible for work stress is analyzed in these industries. These industries were classified in to two types, namely chemical and heavy engineering ,based on the product manufactured and work environment and the analysis is further carried out for these two categories.The variation of work stress with different age , designation and experience of the employees are analyzed by means of one-way ANOVA. Further three different type of modelling of work stress, namely factor modelling, structural equation modelling and multinomial logistic regression modelling was done to analyze the association of factors responsible for work stress. All these models are found equally good in predicting the work stress.The present study indicates that work stress exists among the employees in public sector industries in Kerala. Employees belonging to age group 40-45yrs and experience groups 15-20yrs had relatively higher work demand ,low job control, and low support at work. Low job control was noted among lower designation levels, particularly at the worker level in these industries. Hence the instrument developed using the seven factors namely demand, control, manager support, peer support, relationship, role and change can be effectively used for the evaluation of work stress in industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A yearlong (September 2009–August 2010) study was undertaken to find out possible reasons for occasional occurrence of White Spot Syndrome Virus (WSSV) outbreak in the traditional prawn farms adjoining Cochin backwaters. Physicochemical and bacteriological parameters of water and sediment from feeder canal and four shrimp farms were monitored on a fortnightly basis. The physicochemical parameters showed variation during the two production cycles and between the farms studied. Dissolved oxygen (DO) content of water fromfeeder canal showed low oxygen levels (as low as 0.8mg/L) throughout the study period. There was no disease outbreak in the perennial ponds. Poor water exchange coupled with nutrient loading from adjacent houses resulted in phytoplankton bloom in shallow seasonal ponds which led to hypoxic conditions in early morning and supersaturation of DO in the afternoon besides considerably high alkaline pH. Ammonia levels were found to be very high in these ponds.WSSV outbreak was encountered twice during the study leading to mass mortalities in the seasonal ponds. The hypoxia and high ammonia content in water and abrupt fluctuations in temperature, salinity and pH might lead to considerable stress in the shrimps triggeringWSSV infection in these traditional ponds