8 resultados para Structural health monitoring systems
em Cochin University of Science
Resumo:
Corrosion represents one of the largest through life cost component of ships. Ship owners and operators recognize that combating corrosion significantly impacts the vessels’ reliability, availability and through life costs. Primary objective of this paper is to review various inspections, monitoring systems and life cycle management with respect to corrosion control of ships and to develop the concept of “Corrosion Health” (CH) which would quantify the extent of corrosion at any point of ships’ operational life. A system approach in which the ship structure is considered as a corrosion system and divided into several corrosion zones, with distinct characteristics, is presented. Various corrosion assessment criteria for assessment of corrosion condition are listed. A CH rating system for representation of complex corrosion condition with a numeric number along with recommendations for repair/maintenance action is also discussed
Resumo:
Aquaculture has developed to become one of the fastest growing food producing sectors in the world.Today India is one among the major shrimp producing countries in the world.There are extensive and intensive shrimp culture practices. In extensive shrimp culture, shrimps are stocked at low densities (< 25 PLs m'2)in large ponds or tidal enclosures in which little or no management is exercised or possible. Farmers depend almost entirely on natural conditions in extensive cultures. Intensive shrimp culture is carried out in high densities (>200 PLs m'2). Much of the world shrimp production still comes from extensive culture.There is a growing demand for fish and marine products for human and animal consumption. This demand has led to rapid growth of aquaculture, which some times has been accompanied by ecological impacts and economic loss due to diseases. The expansion of shrimp culture always accompanies local environmental degradation and occurrence of diseases.Disease out breaks is recognised as a significant constraint to aquaculture production. Environmental factors, water quality, pollution due to effluent discharge and pathogenic invasion due to vertical and horizontal transmission are the main causes of shrimp disease out breaks. Nutritional imbalance, toxicant and other pollutants also account for the onset of diseases. pathogens include viruses, bacteria, fungi and parasites.Viruses are the most economically significant pathogens of the cultured shrimps world wide. Disease control in shrimp aquaculture should focus first on preventive measures for eliminating disease promoting factors.ln order to design prophylactic and proactive measures against shrimp diseases, it is mandatory to understand the immune make up of the cultivable species, its optimum culture conditions and the physico chemical parameters of the rearing environment. It has been proven beyond doubt that disease is an end result of complex interaction of environment, pathogen and the host animal. The aquatic environment is abounded with infectious microbes.The transmission of disease in this environment is extremely easy, especially under dense, culture conditions. Therefore, a better understanding of the immune responses of the cultured animal in relation to its environmental alterations and microbial invasions is essential indevising strategic measures against aquaculture loss due to diseases. This study accentuate the importance of proper and regular health monitoring in shrimps employing the most appropriate haematological biomarkers for application of suitable prophylactic measures in order to avoid serious health hazards in shrimp culture systems.
Resumo:
The present study on the sustainability of medicinal plants in Kerala economic considerations in domestication and conservation of forest resources. There is worldwide consensus on the fact that medicinal plants are important not only in the local health support systems but in rural income and foreign exchange earnings. Sustainability of medicinal plants is important for the survival of forest dwellers, the forest ecosystem, conserving a heritage of human knowledge and overall development through linkages. More equitable sharing of the benefits from commercial utilization of the medicinal plants was found essential for the sustainability of the plants. Cultivation is very crucial for the sustainability of the sector. Through a direct tie-up with the industry, the societies can earn more income and repatriate better collection charges to its members. Cultivation should be carried out in wastelands, tiger reserves and in plantation forests. In short, the various players in the in the sector could find solution to their specific problems through co-operation and networking among them. They should rely on self-help rather than urging the government to take care of their needs. As far as the government is concerned, the forest department through checking over- exploitation of wild plants and the Agriculture Dept. through encouraging cultivation could contribute to the sustainable development of the medicinal plant sector.
Resumo:
A new method for the fabrication of high uniformity monolithic 1 x 4 single mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring.
Resumo:
A new method for the fabrication of high uniformity monolithic 1 x4 single-mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring
Resumo:
The present study is an attempt to find out the ralation between RNA/DNA ratio, protein,percentage growth rate and specific growth rate of prawn,Penaeus indicus with respect to Nervous system, Eyestalk and Muscle tissues during ontogenesis. We have isolated and purified a natural agglutinin in the hemolymph of P.indicus with antigenecity, agglutinating, hemolytic and antibacterial properties. The influence of growth and environmental parameters on the level of agglutinin in the hemolymph was studied. Agglutinin concentration during normal growth process was compared. The agglutinin concentration in the hemolymph was quantified through developing ELISA, which is useful in health monitoring studies of individual species. Complete amino acid composition of both the subunits of P.indicus agglutinin were analysed. P.indicus agglutinin showed similarity to those proteins having antigenecity,hemolytic and agglutinating properties.Hence, agglutinin was considered as a natural defence protein in the hemolymph of P.indicus responsible for immune surveillance. The humoral defence mechanism of agglutinin was a co-operative effort with hemocytes and complement system. The composition of isolated agglutinin of P.indicus amino acids will be helpful in the synthesis of new antibacterial analogues which can be used against disease causing organisms.
Resumo:
In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.
Resumo:
This thesis Entitled Haematological responses of penaeus monodon to environmental alterations and pathogenic invasion. Thesis concluded from the present study that stress is accompanied by alterations in haemolymph metabolic variables and immune responses that influences the susceptibility of P. monodon to infection. Acute salinity variations were proved to be a stress condition that enhances the susceptibility of P. monodon to V. harveyi and WSSV infection. Ambient Cu at 0.1 mg 1" and ambient Zn at 1.0 mg 1" proved immunostimulatory in increasing the immunocompetence of P. monodon to WSSV infection and higher concentrations of Cu and Zn proved immunosuppressive. Haemolymph total protein, total carbohydrates and total lipids showed the highest relation with immune responses. THC, PO, ACP and ALP that greatly correlated with the survival rate proposed as reliable biomarkers of health in P. monodon. The study highlights the need for proper management practices and regular health monitoring to be adopted to avoid mass mortality in shrimp culture ponds.