6 resultados para Structural adjustment
em Cochin University of Science
Resumo:
In India, Food Security meant supply of food grains and the medium was Public Distribution System. Public Distribution System (PDS) is a rationing mechanism that entitles households to specified quantities of selected commodities at subsidized prices. The Objectives of PDS are maintaining Price Stability, rationing during times of scarcity, welfare of the poor, and keeping a check on private trade. Kerala has registered remarkable improvement in poverty reduction in general over the years among all social sections, including scheduled caste and scheduled tribe population. As part of the structural adjustment intended to reduce public expenditure, PDS has been modified as Revamped PDS (RPDS) during 1992 and later on as Targeted PDS (TPDS) in 1997, intended to target households on the basis of income criterion, classifying people as Below Poverty Line (BPL) and Above Poverty Line (APL). TPDS provides 25Kg. of food gra.ins through the Fair Price Shops per month @ Rs.3/- per Kg. of rice/ wheat to the BPL category and @Rs.8.90 and Rs.6.7O for rice and wheat respectively to the APL category of people. Since TPDS is intended to target the poor people, the subsidy spent by the government for the scheme should be beneficial to the poor people and naturally they should utilize the benefits by purchasing the food grains allotted under the scheme. Several studies have shown that there is underutilization of the allotments under TPDS. Therefore, the extent of utilization of TPDS in food grains, how and why remains as a major hurdle, in improving the structure and system of PDS. Livelihood of the tribal population being under threat due to increasing degradation of the resources, the targeting system ought to be effective among the tribal population. Therefore, performance of the TPDS in food grains, in terms of the utilization by the tribal population in Kerala, impact thereof and the factors, if any, affecting proper utilization were considered as the research problem in this study. The study concentrated on the pattern of consumption of food grains by the tribal people, whether their hunger needs are met by distribution of food grains through the TPDS, extent to which TPDS in food grains reduce their share of expenditure on food in the total household expenditure, and the factors affecting the utilization of the TPDS in food grains by the tribal population. Going through the literature, it has been noted that only few studies concentrated on the utilization of TPDS in food grains among the tribal population in Kerala.The Research Design used in this study is descriptive in nature, but exploratory in some aspects. Idukki, Palakkad and Wayanad have more than 60% of the population of the tribals in the state. Within the three districts mentioned above, 14 villages with scheduled tribe concentration were selected for the study. 95 tribal colonies were selected from among the various tribal settlements. Collection of primary data was made from 1231 households with in the above tribal colonies. Analysis of data on the socio-economic factors of the tribal people, pattern of food consumption, extent of reduction in the share of expenditure on food among the household expenditure of the tribal people and the impact of TPDS on the tribal families etc. and testing of hypotheses to find out the relation/association of each of the six variables, using the data on BPL and APL categories of households separately have resulted in findings such as six percent of the tribal families do not have Ration Cards, average per capita consumption of food grains by the tribal people utilizing TPDS meets 62% of their minimum requirement, whereas the per capita consumption of food grains by the tribal people is higher than the national average per capita consumption, 63% deficiency in food grains may be felt by tribal people in general, if TPDS is withdrawn, and the deficit for BPL tribal people may be 82%, TPDS facilitates a reduction of 9.71% in the food expenditure among the total household expenditure of the tribal people in general, share of food to non-food among BPL category of tribals is 55:45 and 40:60 among the APL, Variables, viz. household income, number of members in the family and distance of FPS from tribal settlements etc. have influence on the quantity of rice being purchased by the tribal people from the Fair Price Shops, and there is influence of household income and distance of FPS from tribal settlements on the quantity of rice being purchased by the tribal people from the open market. Rationing with differential pricing on phased allotments, rectification of errors in targeting, anomalies in norms and procedures for classifying tribal people as BPL/APL, exclusive Income Generation for tribal population, paddy cultivation in the landholdings possessed by the tribal people, special drive for allotment of Ration Cards to the tribal people, especially those belonging to the BPL category, Mobile Fair Price Shops in tribal settlements, ensure quality of the food grains distributed through the TPDS, distribution of wheat flour in packed condition instead of wheat through the Fair Price Shops are recommended to address the shortcomings and weaknesses of the TPDS vis-avis the tribal population in Kerala.
Resumo:
The primary aim of these investigations was to probe the spectroscopic, electrochemical, biological and single crystal X-ray diffraction studies of some selected transition metal complexes of 4N-monosubstituted thiosemicarbazones. Transition metal complexes with thiosemicarbazones exhibit a wide range of stereochemistries and possess potential biological activity. Metal complexes of thiosemicarbazones are proved to have improved pharmacological and therapeutic effects. The studies are conducted to bring about a fair understanding of the structure activity relationship and to develop certain effective and economical metal-based antimicrobial agents. Study showed that the thiosemicarbazones have antibacterial, antiviral and antiproliferative properties and hence used against tuberculosis, leprosy, psoriasis, rheumatism, trypanosomiasis and coccidiosis. Certain thiosemicarbazones showed a selective inhibition of HSV and HIV infections. The insolubility of most thiosemicarbazones in water causes difficulty in the oral administration in clinical practice. Transition metal complexes are found to have more activity than uncombined thiosemicarbazones. They exhibit a variety of denticity and can be varied by proper substitution. The stereochemistry assumed by the thiosemicarbazones during the coordination with transition metal ions depends on the factors such as preparative conditions and availability of additional bonding site in the ligand moiety and charge of the ligand. The resulting complexes exhibited a wide range of stereochemistries and have biomimic activity and potential application as sensors.
Resumo:
This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.
Resumo:
The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.
Resumo:
This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films