8 resultados para Strengthen of foundations

em Cochin University of Science


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The technique of reinforcing soil for foundation improvement is well established. This paper addresses the aspect of settlement of reinforced sand foundations, where the major part of the existing work deals with the aspect of bearing capacity. A detailed analysis is made paying individual attention to soil, reinforcement, and the interface between the two. A three-dimensional, nonlinear finite-element analysis is presented that uses a three-dimensional, nonlinear soil-reinforcement interface friction element, along with other threedimensional elements to model the system. The results of the analysis are compared with those from tests conducted in the laboratory and are found to be in good agreement. The studies lead to a better understanding of the behavior of the system at different stages of loading

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constructional activities in the coastal belt of our country often demand deep foundations because of the poor engineering properties and the related problems arising from weak soil at shallow depths.The soil profile in coastal area often consists of very loose sandy soils extending to a depth of 3 to 4 m from the ground level underlain by clayey soils of medium consistency.The very low shearing resistance of the foundation bed causes local as well as punching shear failure.Hence structures built on these soils may suffer from excessive settlements.This type of soil profile is very common in coastal areas of Kerala,especially in Cochin. Further,the high water table and limited depth of the top sandy layer in these areas restrict the depth of foundation thereby further reducing the safe bearing capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing tempo of construction activity the world over creates heavy pressure on existing land space. The quest for new and competent site often points to the needs for improving existing sites, which are otherwise deemed unsuitable for adopting conventional foundations. This is accomplished by ground improvement methods, which are employed to improve the quality of soil incompetent in their natural state. Among the construction activities, a well-connected road network is one of the basic infrastructure requirements, which play a vital role for the fast and comfortable movement of inter- regional traffic in countries like India.One of the innovative ground improvement techniques practised all over the world is the use of geosynthetics, which include geotextiles, geomembranes, geogrids, etc . They offer the advantages such as space saving, enviromnental sensitivity, material availability, technical superiority, higher cost savings, less construction time, etc . Because of its fundamental properties, such as tensile strength, filtering and water permeability, a geotextile inserted between the base material and sub grade can function as reinforcement, a filter medium, a separation layer and as a drainage medium. Though polymeric geotextiles are used in abundant quantities, the use of natural geotextiles (like coir, jute, etc.) has yet to get momentum. This is primarily due to the lack of research work on natural geotextilcs for ground improvement, particularly in the areas of un paved roads. Coir geotextiles are best suited for low cost applications because of its availability at low prices compared to its synthetic counterparts. The proper utilisation of coir geotextilcs in various applications demands large quantities of the product, which in turn can create a boom in the coir industry. The present study aims at exploring the possibilities of utilising coir geotextiles for unpaved roads and embankments.The properties of coir geotextiles used have been evaluated. The properties studied include mass per unit area, puncture resistance, tensile strength, secant modulus, etc . The interfacial friction between soils and three types of coir geotextiles used was also evaluated. It was found that though the parameters evaluated for coir geotextiles have low values compared to polymeric geotextiles, the former are sufficient for use in unpaved roads and embankments. The frictional characteristics of coir geotextile - soil interfaces are extremely good and satisfy the condition set by the International Geosynthetic Society for varied applications.The performance of coir geotextiles reinforced subgrade was studied by conducting California Bearing Ratio (CBR) tests. Studies were made with coir geotextiles placed at different levels and also in multiple layers. The results have shown that the coir geotextile enhances the subgrade strength. A regression analysis was perfonned and a mathematical model was developed to predict the CBR of the coir geotextile reinforced subgrade soil as a function of the soil properties, coir geotextile properties, and placement depth of reinforcement.The effects of coir geotextiles on bearing capacity were studied by perfonning plate load tests in a test tan1e This helped to understand the functioning of geotextile as reinforcement in unpaved roads and embankments. The perfonnance of different types of coir geotextiles with respect to the placement depth in dry and saturated conditions was studied. The results revealed that the bearing capacity of coir-reinforced soil is increasing irrespective of the type of coir geotextiles and saturation condition.The rut behaviour of unreinforced and coir reinforced unpaved road sections were compared by conducting model static load tests in a test tank and also under repetitive loads in a wheel track test facility. The results showed that coir geotextiles could fulfill the functions as reinforcement and as a separator, both under static and repetitive loads. The rut depth was very much reduced whik placing coir geotextiles in between sub grade and sub base.In order to study the use of Coir geotextiles in improving the settlement characteristics, two types of prefabricated COlf geotextile vertical drains were developed and their time - settlement behaviour were studied. Three different dispositions were tried. It was found that the coir geotextile drains were very effective in reducing consolidation time due to radial drainage. The circular drains in triangular disposition gave maximum beneficial effect.In long run, the degradation of coir geotextile is expected, which results in a soil - fibre matrix. Hence, studies pertaining to strength and compressibility characteristics of soil - coir fibre composites were conducted. Experiments were done using coir fibres having different aspect ratios and in different proportions. The results revealed that the strength of the soil was increased by 150% to 200% when mixed with 2% of fibre having approximately 12mm length, at all compaction conditions. Also, the coefficient of consolidation increased and compression index decreased with the addition of coir fibre.Typical design charts were prepared for the design of coir geotextile reinforced unpaved roads. Some illustrative examples are also given. The results demonstrated that a considerable saving in subase / base thickness can he achieved with the use of eoir geotextiles, which in turn, would save large quantities of natural aggregates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing fishing pressure in coastal waters is the need of the day in the Indian marine fisheries sector of the country which is fast changing from a mere vocational activity to a capital intensive industry. It requires continuous monitoring of the resource exploitation through a scientifically acceptable methodology, data on production of each species stock, the number and characteristics of the fishing gears of the fleet, various biological characteristics of each stock, the impact of fishing on the environment and the role of fishery—independent on availability and abundance. Besides this, there are issues relating to capabilities in stock assessment, taxonomy research, biodiversity, conservation and fisheries management. Generation of reliable data base over a fixed time frame, their analysis and interpretation are necessary before drawing conclusions on the stock size, maximum sustainable yield, maximum economic yield and to further implement various fishing regulatory measures. India being a signatory to several treaties and conventions, is obliged to carry out assessments of the exploited stocks and manage them at sustainable levels. Besides, the nation is bound by its obligation of protein food security to people and livelihood security to those engaged in marine fishing related activities. Also, there are regional variabilities in fishing technology and fishery resources. All these make it mandatory for India to continue and strengthen its marine capture fisheries research in general and deep sea fisheries in particular. Against this background, an attempt is made to strengthen the deep sea fish biodiversity and also to generate data on the distribution, abundance, catch per unit effort of fishery resources available beyond 200 m in the EEZ of southwest coast ofIndia and also unravel some of the aspects of life history traits of potentially important non conventional fish species inhabiting in the depth beyond 200 m. This study was carried out as part of the Project on Stock Assessment and Biology of Deep Sea Fishes of Indian EEZ (MoES, Govt. of India).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction of growth in the primary marine fishing industry of Kerala is a sine gua Qgn for improving the economy of the fishermen, the state's domestic product as well as earning more foreign exchange for the country. The State Administration has been trying to instil growth into the industry eversince the output of the industry showed marked sign of decline (particularly after 1975). Significantly, it has attempted to strengthen the traditional sector, (which is considered to be the crucial sector of the primary marine fishing industry of the state) by introducing intermediate technology and by revamping the organisational structure of the industry. But it appears that the production system in the primary marine fishing industry of Kerala has been severely constrained by the existing technology, organisation of production and marketing institutions. Regeneration of growth in the industry calls forth an understanding of the 'process' of growth in the industry and the need to réorganise it with new technology, and new organisations. The present study is an attempt to unraval the process of growth in the primary marine fishing industry of Kerala since 1951

Relevância:

30.00% 30.00%

Publicador:

Resumo:

India is a signatory to the United Nations Declaration of Human Rights 1948 and the International Covenant on Civil and Political 1966, the two major International instruments, building the foundations of the major democracies and the constitutions of the world. Both these instruments give an independent and upper position to right to privacy compared to right to freedom of speech and expression. The freedom of press finds its place under this right to freedom of speech and expression. Both these rights are the two opposite faces of the same coin. Therefore, without the right of privacy finding an equal place in Indian law compared to right to freedom of speech and expression, the working of democracy would be severely handicapped and violations against citizens rights will be on the rise It was this problem in law and need to bring a balance between these two conflicting rights that induced me to undertake this venture. This heavy burden to bring in a mechanism to balance these two rights culminated in me to undertake this thesis titled “Right to Privacy and Freedom of Press – Conflicts and Challenges

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. The results reveal that treatment with geotextile in combination with grass is an effective eco-hydrological measure to protect steep slopes from erosion. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods. This paper analyses the performance of coir geotextile in different treatments with respect to soil moisture content, protection against erosion and biomass production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft clays known for their high compressibility, low stiffness and low shear strength are always associated with large settlement. In place soil treatment using calcium-based stabilizers like lime and cement is a feasible solution to readdress strength deficiencies and problematic shrink/swell behaviour of unstable subgrade soils. Out of these, lime has been proved unambiguously as the most effective and economical stabilising agent for marine clays. Lime stabilisation creates long-term chemical changes in unstable clay soils to create strong, but flexible, permanent structural layers in foundations and other pavement systems. Even though calcium-based stabilizers can improve engineering properties of soft clays, problems can arise when they are used in soils rich in sulphates. It is possible for marine clays to be enriched with sulphates, either by nature or due to the discharge of nearby industrial wastes containing sulphates. The presence of sulphates is reported to adversely affect the cation exchange and pozzolanic reactions of cement and lime treated soil systems. The anions of sulphates may combine with the available calcium and alumina, and form insoluble ettringite in the soil system. Literature on sulphate attack in lime treated marine clays reports that formation of ettringite in lime-sodium sulphate-clay system is capable of adversely affecting the engineering behavior of marine clays. Only very few studies have been conducted on soft marine clays found along the coastal belt of Kerala and that too, is limited to Cochin marine clays. The studies conducted also have the limitation that the strength behaviour of lime stabilised clay was investigated only for one year. Practically no data pertaining to long term adverse effects likely to be brought about by sulphates on the strength and compressibility characteristics of Cochin marine clays is available. The overriding goal of this investigation was thus to examine the effectiveness of lime stabilisation in Cochin marine clays under varying sulphate contents. The study aims to reveal the changes brought about by varying sulphate contents on both physical and engineering properties of these clays stabilised by lime and the results for various curing periods up to two years is presented in this thesis. Quite often the load causing an unacceptable settlement may be less than the load required to cause shear failure and therefore attempt has been made in this research to highlight sulphate induced changes in both the compressibility and strength characteristics of lime treated Cochin marine clays. The study also aimed at comparing the available IS methods for sulphate quantification and has attempted to determine the threshold level of sulphate likely make these clays vulnerable by lime stabilisation. Clays used in this study were obtained from two different sites in Kochi and contained sulphate in two different concentrations viz., 0.5% and 0.1%. Two different lime percentages were tried out, 3% and 6%. Sulphate content was varied from 1% to 4% by addition of reagent grade sodium sulphate. The long term influence of naturally present sulphate is also investigated. X-ray diffraction studies and SEM studies have been undertaken to understand how the soil-lime reactions are affected in the presence of sodium sulphate. Natural sulphate content of 0.1% did not seem to have influenced normal soil lime reactions but 0.5% sulphate could induce significant changes adversely in both compressibility and strength behaviour of lime treated clays after long duration. Compressibility is seen to increase drastically with increasing sulphate content suggesting formation of ettringite on curing for longer periods. Increase in compression index and decrease in bond strength with curing period underlined the adverse effects induced in lime treated marine clays by the presence of sulphates. Presence of sulphate in concentrations ranging from 0.5 % to 4% is capable of adversely affecting the strength of lime treated marine clays. Considerable decrease is observed with increasing concentrations of sulphate. Ettringite formation due to domination of sodium ions in the system was confirmed in mineralogical studies made. Barium chloride and barium hydroxide is capable of bringing about beneficial changes both in compressibility and strength characteristics of lime treated Cochin marine clays in the presence of varying concentrations of sulphate and is strongly influenced by curing time. Clay containing sodium sulphate has increased strength values when either of barium compounds was used with lime ascompared with specimens treated with lime only. Barium hydroxide is observed to remarkably increase the strength as compared to barium chloride,when used in conjunction with lime to counteract the effect of sulphate.