13 resultados para Strain selection

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathogenic microorganisms such as Bacillus cereus, Listeria Monocytogenes and Staphylococcus sp have caused serious diseases, and consequently contributed to considerable economic loss in the food and agricultural industries. Antibiotics have been practically used to treat these pathogens since penicillin G was discovered more than half a century ago. Many different types of antibiotics have been discovered or synthesized to control pathogenic microorganisms. Repetitive use and misuse of antibiotics by the agricultural and pharmaceutical industries have caused the emergence of multidrug-resistant microorganisms, even to the strongest antibiotics currently available; therefore, the rapid development of more effective antimicrobial compounds is required to keep pace with demand. Bacteria were isolated from marine water and sediment samples collected from various locations off the coast of Cochin and salt pans of Tuticorin using pour plate technique. One hundred and twelve isolates were obtained. Seventeen isolates exhibiting antimicrobial activity were segregated after primary screening. The secondary screening which was aimed at selection of bacteria that produce proteinaceous inhibitory compounds, helped to select five strains viz. BTFK101, BTHT8, BTKM4, BTEK16 and BTSB22. The five isolates inhibited the growth of six Gram positive test organisms viz. B. cereus, B. circulans, B. coagulans, B. pumilus, Staphylococcus aureus and Clostridium perfringens. After quantitative estimation of the bacteriocin production, the two strains BTFK101 and BTHT8 were selected for further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main source of protein for human and animal consumption is from the agricultural sector, where the production is vulnerable to diseases, fluctuations in climatic conditions and deteriorating hydrological conditions due to water pollution. Therefore Single Cell Protein (SCP) production has evolved as an excellent alternative. Among all sources of microbial protein, yeast has attained global acceptability and has been preferred for SCP production. The screening and evaluation of nutritional and other culture variables of microorganisms are very important in the development of a bioprocess for SCP production. The application of statistical experimental design in bioprocess development can result in improved product yields, reduced process variability, closer confirmation of the output response to target requirements and reduced development time and overall cost.The present work was undertaken to develop a bioprocess technology for the mass production of a marine yeast, Candida sp.S27. Yeasts isolated from the offshore waters of the South west coast of India and maintained in the Microbiology Laboratory were subjected to various tests for the selection of a potent strain for biomass production. The selected marine yeast was identified based on ITS sequencing. Biochemical/nutritional characterization of Candida sp.S27 was carried out. Using Response Surface Methodology (RSM) the process parameters (pH, temperature and salinity) were optimized. For mass production of yeast biomass, a chemically defined medium (Barnett and Ingram, 1955) and a crude medium (Molasses-Yeast extract) were optimized using RSM. Scale up of biomass production was done in a Bench top Fermenter using these two optimized media. Comparative efficacy of the defined and crude media were estimated besides nutritional evaluation of the biomass developed using these two optimized media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the fracture behaviour of polymer blends is the topic of this thesis. The blends selected are PP/HDPE and PS/HIPS. PP/HDPE blend is chosen due to its commercial importance and PS/HIPS blend is selected to study the transition from brittle fracture to ductile fracture.PP/HDPE blends were prepared at different compositions by melt blending at 180°C and fracture failure process was investigated by conducting notch sensitivity test and tensile test at different strain rates. The effects of two types of modifiers (particulate and elastomer) on the fracture behaviour and notch sensitivity of PP/HDPE blends were studied. The modifiers used are calcium carbonate, a hard particulate filler commonly used in plastics and Ethylene Propylene Diene Monomer (EPDM). They were added in 2%, 4% and 6% by weight of the blends.The study shows that the mechanical properties of PP/HDPE blends can be optimized by selecting proper blend compositions. The selected modifiers are found to alter and improve the fracture behaviour and notch sensitivity of the blends. Particulate fillers like calcium carbonate can be used for making the mechanical behaviour more stable at the various blend compositions. The resistance to notch sensitivity of the blends is found to be marginally lower in the presence of calcium carbonate. The elastomeric modifier EPDM produces a better stability of the mechanical behaviour. A low concentration of EPDM is sufficient to effect such a change. EPDM significantly improves the resistance to notch sensitivity of the blends. The study shows that judicious selection of modifiers can improve the fracture behaviour and notch sensitivity of PP/HDPE blends and help these materials to be used for critical applications.For investigating the transition in fracture behaviour and failure modes, PS/HIPS blends were selected. The blends were prepared by melt mixing followed by injection moulding to prepare the specimens for conducting tensile, impact and flexure tests. These tests were used to simulate the various conditions which promote failure.The tensile behaviour of unnotched and notched PS/HIPS blend samples were evaluated at slow speeds. Tensile strengths and moduli were found to increase at the higher testing speed for all the blend combinations whereas maximum strain at break was found to decrease. For a particular speed of testing, the tensile strength and modulus show only a very slight decrease as HIPS content is increased up to about 40%. However, there is a drastic decrease on increasing the HIPS content thereafter.The maximum strain at break shows only a very slight change up to about 40% HIPS content and thereafter shows a remarkable increase. The notched specimens also follow a comparable trend even though the notch sensitivity is seen high for PS rich blends containing up to 40% HIPS. The notch sensitivity marginally decreases with increase in HIPS content. At the same time, it is found to increase with the increase in strain rate. It is observed that blends containing more than 40% HIPS fail in ductile mode.The impact characteristics of PSIHIPS blends studied were impact strength, the energy absorbed by the test specimen and impact toughness. Remarkable increase in impact strength is observed as HIPS content in the blend exceeds 40%. The energy absorbed by the test specimens and the impact toughness also show a comparable trend.Flexural testing which helps to characterize the load bearing capacity was conducted on PS/HIPS blend samples at the two different testing speeds of 5mmlmin and 10 mm/min. The flexural strength increases with increase in testing speed for all the blend compositions. At both the speeds, remarkable reduction in flexural strength is observed as HIPS content in the blend exceeds 40%. The flexural strain and flexural energy absorbed by the specimens are found to increase with increase in HIPS content. At both the testing speeds, brittle fracture is observed for PS rich blends whereas HIPS rich blends show ductile mode of failure.Photoelastic investigations were conducted on PS/HIPS blend samples to analyze their failure modes. A plane polariscope with a broad source of light was utilized for the study. The coloured isochromatic fringes formed indicate the presence of residual stress concentration in the blend samples. The coverage made by the fringes on the test specimens varies with the blend composition and it shows a reducing trend with the increase in HIPS content. This indicates that the presence of residual stress is a contributing factor leading to brittle fracture in PS rich blends and this tendency gradually falls with increase in HIPS content and leads to their ductile mode of failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is focused on the production, purification and characterization of multiple thermostable α-galactosidases from a novel actinomycete strain Streptomyces griseoloalbus. The Chapter I of the thesis covers the wide literature regarding α-galactosidases from various sources and their potential applications. The Chapter 11 deals with the isolation of α-galactosidase- producing actinomycetes and selection of the best strain. The Chapters III and IV describe the optimization of α-galactosidase production under submerged fermentation and solid-state fermentation respectively. The Chapter V describes the purification and characterization of multiple α-galactosidases and also the obvious existence of a novel galactose-tolerant enzyme. The Chapter VI illustrates the potential applications of α-galactosidases from S. griseoloalbus followed by the Chapter VII summarizing and concluding the results of the present investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Packaging is important not only in extending the shellife of fish and fishery products but also improving their marketability. In the recent years, significant development have taken place in the packaging industry. During the past decade in India, there is almost a packaging revolution with the availability of variety packaging materials, thus generating better packaging consciousness in other producer/manufacturing industries. But unfortunately, such realisation is not forthcoming in the fisheries sector and packaging techniques for local and export trade continues to be on traditional lines with their inherent drawbacks and limitations. Better packaging ensures improved quality and presentation of the products and ensures higher returns to the producer. Among several packaging materials used in fishery industry, ISI specifications had been formulated only for corrugated fibre board boxes for export of seafoods and froglegs. This standard was formulated before containersiation came into existance in the export of marine products. Before containerisation, the standards were stringent in view of the rough handling, transportation and storage. Two of the common defects reported in the master cartons exported from India are low mechanical strength and tendency to get wet. They are weakened by the deposits of moisture caused by temperature fluctuations during loading, unloading and other handling stages. It is necessary to rectify the above defects in packaging aquatic products and hence in the present study extensive investigations are carried out to find out the reasons for the damage of master cartons, to evolve code of practice for the packaging oi frozen shrimp for exports, development of alternative style of packaging for the shipping container, development of suitable consumer packaging materials for fish soup powder, cured dried mackeral, fish pickles in oil and frozen shrimp. For the development of suitable packaging materials, it is absolutely essential to know the properties of packaging materials, effect of different packaging materials on theirshelf life and their suitability for food contact applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of synthetic fibres vary with thc inherent physical characteristics of the basic raw materials used mode of preparation of yarns and method of construction of twines. Since the synthetic fibres as maufactured from polymers which are synthesized from simple chemical units, the qualities of man-made fibres can he influenced by the process of manufacture and certain modifications can even be introduced at the processing stage to meet any specific requirement to a certain extent. Hence, an elaborate study of the properties of fish not twines produced has been taken up with a view to determining their suitability for various types of fishing gear with particular reference to conditions prevailing in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant freshwater prawn, Macrobrachium rosenbergii (de Man), is an important commercial species with considerable export value, ideal for cultivation under low saline conditions and in freshwater zones (Kurup 1994). However, despite more than a decade of research on its larval production systems, vibriosis still hampers seed production resulting in high mortality rates. Among the different species of vibrios, Vibrio alginolyticus has been isolated frequently from diseased shrimp as the aetiological agent of vibriosis and has been described as a principal pathogen of both penaeids and nonpenaeids (Lightner 1988; Baticados, Cruz-Lacierda, de la Cruz, Duremdez-Fernandez, Gacutan, Lavilla- Pitogo & Lio-Po 1990; Mohney, Lightner & Bell 1994; Lee, Yu, Chen, Yang & Liu 1996). Vibrio fluvialis, V. alginolyticus, V. cholerae non-O1 (Fujioka & Greco 1984), Aeromonas liquifaciens and V. anguillarum (Colorni 1985) have been isolated from the larvae of M. rosenbergii. A profound relationship between the abundance of members of the family Vibrionaceae and larval mortality (Singh 1990) and the predominance of Vibrio in eggs, larvae and post-larvae of M. rosenbergii (Hameed, Rahaman, Alagan & Yoganandhan 2003) was reported. The present paper reports the isolation, characterization, pathogenicity and antibiotic sensitivity of V. alginolyticus associated with M. rosenbergii larvae during an occurrence of severe mass mortality at the ninth larval stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For years, choosing the right career by monitoring the trends and scope for different career paths have been a requirement for all youngsters all over the world. In this paper we provide a scientific, data mining based method for job absorption rate prediction and predicting the waiting time needed for 100% placement, for different engineering courses in India. This will help the students in India in a great deal in deciding the right discipline for them for a bright future. Information about passed out students are obtained from the NTMIS ( National technical manpower information system ) NODAL center in Kochi, India residing in Cochin University of science and technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano magnetic oxides are promising candidates for high density magnetic storage and other applications. Nonspherical mesoscopic iron oxide particles are also candidate materials for studying the shape, size and strain induced modifications of various physical properties viz. optical, magnetic and structural. Spherical and nonspherical iron oxides having an aspect ratio, ~2, are synthesized by employing starch and ethylene glycol and starch and water, respectively by a novel technique. Their optical, structural, thermal and magnetic properties are evaluated. A red shift of 0⋅24 eV is observed in the case of nonspherical particles when compared to spherical ones. The red shift is attributed to strain induced changes in internal pressure inside the elongated iron oxide particles. Pressure induced effects are due to the increased overlap of wave functions. Magnetic measurements reveal that particles are superparamagnetic. The marked increase in coercivity in the case of elongated particles is a clear evidence for shape induced anisotropy. The decreased specific saturation magnetization of the samples is explained on the basis of weight percentage of starch, a nonmagnetic component and is verified by TGA and FTIR studies. This technique can be modified for tailoring the aspect ratio and these particles are promising candidates for drug delivery and contrast enhancement agents in magnetic resonance imaging

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine yeasts (33 strains) were isolated from the coastal and offshore waters off Cochin. The isolates were identified and then characterized for the utilization of starch, gelatin, lipid, cellulose, urea, pectin, lignin, chitin and prawn-shell waste. Most of the isolates were Candida species. Based on the biochemical characterization, four potential strains were selected and their optimum pH and NaCI concentration for growth were determined. These strains were then inoculated into prawn-shell waste and SCP (single cell protein) generation was noted in terms of the increase in protein content of the final product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.