18 resultados para Stochastic representation
em Cochin University of Science
Resumo:
This thesis analyses certain problems in Inventories and Queues. There are many situations in real-life where we encounter models as described in this thesis. It analyses in depth various models which can be applied to production, storag¢, telephone traffic, road traffic, economics, business administration, serving of customers, operations of particle counters and others. Certain models described here is not a complete representation of the true situation in all its complexity, but a simplified version amenable to analysis. While discussing the models, we show how a dependence structure can be suitably introduced in some problems of Inventories and Queues. Continuous review, single commodity inventory systems with Markov dependence structure introduced in the demand quantities, replenishment quantities and reordering levels are considered separately. Lead time is assumed to be zero in these models. An inventory model involving random lead time is also considered (Chapter-4). Further finite capacity single server queueing systems with single/bulk arrival, single/bulk services are also discussed. In some models the server is assumed to go on vacation (Chapters 7 and 8). In chapters 5 and 6 a sort of dependence is introduced in the service pattern in some queuing models.
Resumo:
The thesis deals with analysis of some Stochastic Inventory Models with Pooling/Retrial of Customers.. In the first model we analyze an (s,S) production Inventory system with retrial of customers. Arrival of customers from outside the system form a Poisson process. The inter production times are exponentially distributed with parameter µ. When inventory level reaches zero further arriving demands are sent to the orbit which has capacity M(<∞). Customers, who find the orbit full and inventory level at zero are lost to the system. Demands arising from the orbital customers are exponentially distributed with parameter γ. In the model-II we extend these results to perishable inventory system assuming that the life-time of each item follows exponential with parameter θ. The study deals with an (s,S) production inventory with service times and retrial of unsatisfied customers. Primary demands occur according to a Markovian Arrival Process(MAP). Consider an (s,S)-retrial inventory with service time in which primary demands occur according to a Batch Markovian Arrival Process (BMAP). The inventory is controlled by the (s,S) policy and (s,S) inventory system with service time. Primary demands occur according to Poissson process with parameter λ. The study concentrates two models. In the first model we analyze an (s,S) Inventory system with postponed demands where arrivals of demands form a Poisson process. In the second model, we extend our results to perishable inventory system assuming that the life-time of each item follows exponential distribution with parameter θ. Also it is assumed that when inventory level is zero the arriving demands choose to enter the pool with probability β and with complementary probability (1- β) it is lost for ever. Finally it analyze an (s,S) production inventory system with switching time. A lot of work is reported under the assumption that the switching time is negligible but this is not the case for several real life situation.
Resumo:
This paper presents gamma stochastic volatility models and investigates its distributional and time series properties. The parameter estimators obtained by the method of moments are shown analytically to be consistent and asymptotically normal. The simulation results indicate that the estimators behave well. The insample analysis shows that return models with gamma autoregressive stochastic volatility processes capture the leptokurtic nature of return distributions and the slowly decaying autocorrelation functions of squared stock index returns for the USA and UK. In comparison with GARCH and EGARCH models, the gamma autoregressive model picks up the persistence in volatility for the US and UK index returns but not the volatility persistence for the Canadian and Japanese index returns. The out-of-sample analysis indicates that the gamma autoregressive model has a superior volatility forecasting performance compared to GARCH and EGARCH models.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.
Resumo:
The thesis entitled Analysis of Some Stochastic Models in Inventories and Queues. This thesis is devoted to the study of some stochastic models in Inventories and Queues which are physically realizable, though complex. It contains a detailed analysis of the basic stochastic processes underlying these models. In this thesis, (s,S) inventory systems with nonidentically distributed interarrival demand times and random lead times, state dependent demands, varying ordering levels and perishable commodities with exponential life times have been studied. The queueing system of the type Ek/Ga,b/l with server vacations, service systems with single and batch services, queueing system with phase type arrival and service processes and finite capacity M/G/l queue when server going for vacation after serving a random number of customers are also analysed. The analogy between the queueing systems and inventory systems could be exploited in solving certain models. In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. In inventory theory, one can extend the present study to the case of multi-item, multi-echelon problems. The study of perishable inventory problem when the commodities have a general life time distribution would be a quite interesting problem. The analogy between the queueing systems and inventory systems could be exploited in solving certain models.
Resumo:
The objective of this thesis is to study the time dependent behaviour of some complex queueing and inventory models. It contains a detailed analysis of the basic stochastic processes underlying these models. In the theory of queues, analysis of time dependent behaviour is an area.very little developed compared to steady state theory. Tine dependence seems certainly worth studying from an application point of view but unfortunately, the analytic difficulties are considerable. Glosod form solutions are complicated even for such simple models as M/M /1. Outside M/>M/1, time dependent solutions have been found only in special cases and involve most often double transforms which provide very little insight into the behaviour of the queueing systems themselves. In inventory theory also There is not much results available giving the time dependent solution of the system size probabilities. Our emphasis is on explicit results free from all types of transforms and the method used may be of special interest to a wide variety of problems having regenerative structure.
Resumo:
In this thesis we study the effect of rest periods in queueing systems without exhaustive service and inventory systems with rest to the server. Most of the works in the vacation models deal with exhaustive service. Recently some results have appeared for the systems without exhaustive service.
Resumo:
In this thesis we attempt to make a probabilistic analysis of some physically realizable, though complex, storage and queueing models. It is essentially a mathematical study of the stochastic processes underlying these models. Our aim is to have an improved understanding of the behaviour of such models, that may widen their applicability. Different inventory systems with randon1 lead times, vacation to the server, bulk demands, varying ordering levels, etc. are considered. Also we study some finite and infinite capacity queueing systems with bulk service and vacation to the server and obtain the transient solution in certain cases. Each chapter in the thesis is provided with self introduction and some important references
Resumo:
In this thesis the queueing-inventory models considered are analyzed as continuous time Markov chains in which we use the tools such as matrix analytic methods. We obtain the steady-state distributions of various queueing-inventory models in product form under the assumption that no customer joins the system when the inventory level is zero. This is despite the strong correlation between the number of customers joining the system and the inventory level during lead time. The resulting quasi-birth-anddeath (QBD) processes are solved explicitly by matrix geometric methods
Resumo:
In this thesis we have presented several inventory models of utility. Of these inventory with retrial of unsatisfied demands and inventory with postponed work are quite recently introduced concepts, the latt~~ being introduced for the first time. Inventory with service time is relatively new with a handful of research work reported. The di lficuity encoLlntered in inventory with service, unlike the queueing process, is that even the simplest case needs a 2-dimensional process for its description. Only in certain specific cases we can introduce generating function • to solve for the system state distribution. However numerical procedures can be developed for solving these problem.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.