14 resultados para Stiffness reduction
em Cochin University of Science
Resumo:
Electromagnetic scattering behaviour of a superstrate loaded metallo– dielectric structure based on Sierpinski carpet fractal geometry is reported. The results indicate that the frequency at which backscattering is minimum can be tuned by varying the thickness of the superstrate. A reduction in backscattered power of 44 dB is obtained simultaneously for both TE and TM polarisations of the incident field.
Resumo:
Reduction of radar cross -section of dihedral corner reflectors using simulated corrugated surface (.SCS) is reported. This technique is found lo be more effective in the reduction of RCS or corner reflectors for normal incidence . A typical reduction of 40-50 dB is achieved using this method
Resumo:
Reduction of radar cross -section of dihedral corner reflectors using simulated corrugated surface (SCS) is reported. The technique is found to be more effective in the reduction of RCS or corner reflectors for normal incidence . A typical reduction of 40-50 dB is achieved using this method.
Resumo:
Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane
Resumo:
Trawling, though an efficient method of fishing, is known to be one of the most non-selective methods of fish capture. The bulk of the wild caught penaeid shrimps landed in India are caught by trawling.In addition to shrimps, the trawler fleet also catches considerable amount of non-shrimp resources. The term bycatch means that portion of the catch other than target species caught while fishing, which are either retained or discarded. Bycatch discards is a serious problem leading to the depletion of the resources and negative impacts on biodiversity. In order to minimize this problem, trawling has to be made more selective by incorporating Bycatch Reduction Devices (BRDs). There are several advantages in using BRDs in shrimp trawling. BRDs reduce the negative impacts of shrimp trawling on marine community. Fishers could benefit economically from higher catch value due to improved catch quality, shorter sorting time, lower fuel costs, and longer tow duration. Adoption of BRDs by fishers would forestall criticism by conservation groups against trawling.
Resumo:
In the context of Indian fisheries there is a paucity of information on bycatch, in general, and bycatch reduction technologies, in particular. In this study, a detailed investigation on trawl bycatch and bycatch reduction measures is attempted with a view to evolve optimized BRDs for improving selectivity of commercial shrimp trawls. The objectives of the study included design and development of hard bycatch reduction devices (BRDs), comparative evaluation of hard bycatch reduction devices, for selective trawling, bycatch characterisation of the trawl landings, off Central Kerala; and investigations on status of the existing trawling systems operated off Central Kerala.
Resumo:
A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at - 0.713V in 0.1 mol l -1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1×10-3 mol1-1 to 1×10-5mol1-1. The detection limit was found to be 4.36×10-6mol1-1 . This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.
Resumo:
Lanthanum oxide, La2O3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La2O3 activated at 300, 500 and 800·C and its mixed oxides with alumina for the reduction of cyclohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides.
Resumo:
Invertase was immobilised on microporous montmorillonite K-10 via adsorption and covalent binding. The immobilised enzymes were tested for sucrose hydrolysis activity in a batch reactor. Km for immobilised systems was greater than free enzyme. The immobilised forms could be reused for 15 continuous cycles without any loss in activity. After 25 cycles, 85% initial activity was retained. A study on leaching of enzymes showed that 100% enzyme was retained even after 15 cycles of reuse. Leaching increased with reaction temperature. Covalent binding resisted leaching even at temperatures of 70 °C.
Resumo:
This thesis presents the Radar Cross Section measurements of different geometric structures such as flat plate,cylinder, corner reflector and circular cone loaded with fractal based metallo dielectric structures.Use of different fractal geometris,metallizations of different shapes as well as the frequency tanability is investigated for TE and TM polarization of the incident electromagnetic field.Application of fractal based metallo-dielectric structures results in RCS reduction over a wide range of frequency bands.RCS enhancement of dihedral corner is observed at certain acute and obtuse corner angles.The experimental results are validated using electromagnetic simulation softwares.
Resumo:
The- classic: experiment of Heinrich Hertz verified the theoretical predict him of Maxwell that kxnfli radio and light waves are physical phenomena governed by the same physical laws. This has started a.rnnJ era of interest in interaction of electromagnetic energy with matter. The scattering of electromagnetic waves from a target is cleverly utilized im1 RADAR. This electronic system used tx> detect and locate objects under unfavourable conditions or obscuration that would render the unaided eye useless. It also provides a means for measuring precisely the range, or distance of an object and the speed of a moving object. when an obstacle is illuminated by electromagnetic waves, energy is dispersed in all directions. The dispersed energy depends on the size, shape and composition of the obstacle and frequency and nature of the incident wave. This distribution of energy’ is known as ‘scattering’ and the obstacle as ‘scatterer’ or 'target'.
Resumo:
Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed