25 resultados para Spray chilling

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years scientists have made rapid and significant advances in the field of semiconductor physics. One of the most important fields of current interest in materials science is the fundamental aspects and applications of conducting transparent oxide thin films (TCO). The characteristic properties of such coatings are low electrical resistivity and high transparency in the visible region. The first semitransparent and electrically conducting CdO film was reported as early as in 1907 [1]. Though early work on these films was performed out of purely scientific interest, substantial technological advances in such films were made after 1940. The technological interest in the study of transparent semiconducting films was generated mainly due to the potential applications of these materials both in industry and research. Such films demonstrated their utility as transparent electrical heaters for windscreens in the aircraft industry. However, during the last decade, these conducting transparent films have been widely used in a variety of other applications such as gas sensors [2], solar cells [3], heat reflectors [4], light emitting devices [5] and laser damage resistant coatings in high power laser technology [6]. Just a few materials dominate the current TCO industry and the two dominant markets for TCO’s are in architectural applications and flat panel displays. The architectural use of TCO is for energy efficient windows. Fluorine doped tin oxide (FTO), deposited using a pyrolysis process is the TCO usually finds maximum application. SnO2 also finds application ad coatings for windows, which are efficient in preventing radiative heat loss, due to low emissivity (0.16). Pyrolitic tin oxide is used in PV modules, touch screens and plasma displays. However indium tin oxide (ITO) is mostly used in the majority of flat panel display (FPD) applications. In FPDs, the basic function of ITO is as transparent electrodes. The volume of FPD’s produced, and hence the volume of ITO coatings produced, continues to grow rapidly. But the current increase in the cost of indium and the scarcity of this material created the difficulty in obtaining low cost TCOs. Hence search for alternative TCO materials has been a topic of active research for the last few decades. This resulted in the development of binary materials like ZnO, SnO2, CdO and ternary materials like II Zn2SnO4, CdSb2O6:Y, ZnSO3, GaInO3 etc. The use of multicomponent oxide materials makes it possible to have TCO films suitable for specialized applications because by altering their chemical compositions, one can control the electrical, optical, chemical and physical properties. But the advantages of using binary materials are the easiness to control the chemical compositions and depositions conditions. Recently, there were reports claiming the deposition of CdO:In films with a resistivity of the order of 10-5 ohm cm for flat panel displays and solar cells. However they find limited use because of Cd-Toxicity. In this regard, ZnO films developed in 1980s, are very useful as these use Zn, an abundant, inexpensive and nontoxic material. Resistivity of this material is still not very low, but can be reduced through doping with group-III elements like In, Al or Ga or with F [6]. Hence there is a great interest in ZnO as an alternative of ITO. In the present study, we prepared and characterized transparent and conducting ZnO thin films, using a cost effective technique viz Chemical Spray Pyrolysis (CSP). This technique is also suitable for large area film deposition. It involves spraying a solution, (usually aqueous) containing soluble salts of the constituents of the desired compound, onto a heated substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study on the fabrication and characterization of spray pyrolysed cadmium sulphide homojunction solar cells. As an alternative to the conventional energy source, the PV technology has to be improved. Study about the factors affecting the performance of the existing solar cells and this will result in the enhancement of efficiency of the cells. At the same time it is equally important to have R&D works on developing new photovoltaic devices and processes which are less expensive for large scale production. CdS is an important binary compound semiconductor, which is very useful in the field of photovoltaics. It is very easy to prepare large area CdS thin films. In order to fabricate thin film homojunction cadmium sulphide cells, prepared and characterized SnO2 thin film as the lower electrode, p-CdS as the active layer and n-CdS as window layer. Cadmium material used for the fabrication of homojunction solar cells is highly toxic. The major damage due to continued exposure to low levels of cadmium are on the kidneys, lungs and bones. The real advantage of spray pyrolysis process is that there is no emission of any toxic gases during the deposition. Very low concentration of the chemicals is needed in this process. The risk involved from this material is very low, though they are toxic. On large scale usage it may become necessary that the cells after their life, should be bought back by the companies to retrieve chemicals like cadmium. This will reduce environmental problem and also the material wastage

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the present work was to automate CSP process, to deposit and characterize CuInS2/In2S3 layers using this system and to fabricate devices using these films.An automated spray system for the deposition of compound semiconductor thin films was designed and developed so as to eliminate the manual labour involved in spraying and facilitate standardization of the method. The system was designed such that parameters like spray rate, movement of spray head, duration of spray, temperature of substrate, pressure of carrier gas and height of the spray head from the substrate could be varied. Using this system, binary, ternary as well as quaternary films could be successfully deposited.The second part of the work deal with deposition and characterization of CuInS2 and In2S3 layers respectively.In the case of CuInS2 absorbers, the effects of different preparation conditions and post deposition treatments on the optoelectronic, morphological and structural properties were investigated. It was observed that preparation conditions and post deposition treatments played crucial role in controlling the properties of the films. The studies in this direction were useful in understanding how the variation in spray parameters tailored the properties of the absorber layer. These results were subsequently made use of in device fabrication process.Effects of copper incorporation in In2S3 films were investigated to find how the diffusion of Cu from CuInS2 to In2S3 will affect the properties at the junction. It was noticed that there was a regular variation in the opto-electronic properties with increase in copper concentration.Devices were fabricated on ITO coated glass using CuInS2 as absorber and In2S3 as buffer layer with silver as the top electrode. Stable devices could be deposited over an area of 0.25 cm2, even though the efficiency obtained was not high. Using manual spray system, we could achieve devices of area 0.01 cm2 only. Thus automation helped in obtaining repeatable results over larger areas than those obtained while using the manual unit. Silver diffusion on the cells before coating the electrodes resulted in better collection of carriers.From this work it was seen CuInS2/In2S3 junction deposited through automated spray process has potential to achieve high efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As emphasis towards sustainable and Renewable energy resources grows world-wide,interest in the capture and use of solar energy is increasing dramatically.Solar cells have been known and used for many years,but depletion of conventional energy resources resulted in the intensification of research on solar cells leading to new design and technique of fabrication.The current emphasis is directed towards high effiency inexpensive solar cells.This thesis includes deposition and characterization of CuInS2 and In2S3 thin films using chemical Spray Pyrolysis(CSP) technique.The optimum condition for these films to be used as absorber and buffer layer respectively in solar cells were thus found out.Solar cell with the stucture,ITO/CuInS2/In2S3/metal electrode was fabricated using these well-characterized films,which yielded an efficiency of 9.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work we report the preparation details studies on ZnO thin films. ZnO thin films are prepared using cost effective deposition technique viz., Chemical Spray Pyrolysis (CSP). The method is very effective for large area preparation of the ZnO thin film. A new post-deposition process could also be developed to avoid the adsorption of oxygen that usually occurs after the spraying process i.e., while cooling. Studies were done by changing the various deposition parameters for optimizing the properties of ZnO thin film. Moreover, different methods of doping using various elements are also tried to enhance the conductivity and transparency of the film to make these suitable for various optoelectronic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.Well developed thin film photovoltaic technologies are based on amorphous silicon, CdTe and CuInSe2. However the cell fabrication process using amorphous silicon requires handling of very toxic gases (like phosphene, silane and borane) and costly technologies for cell fabrication. In the case of other materials too, there are difficulties like maintaining stoichiometry (especially in large area films), alleged environmental hazards and high cost of indium. Hence there is an urgent need for the development of materials that are easy to prepare, eco-friendly and available in abundance. The work presented in this thesis is an attempt towards the development of a cost-effective, eco-friendly material for thin film solar cells using simple economically viable technique. Sn-based window and absorber layers deposited using Chemical Spray Pyrolysis (CSP) technique have been chosen for the purpose

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2 nanocrystalline thin films were deposited on glass substrates by the spray pyrolysis technique in air atmosphere at 375, 400, 425, 450 and 500 ◦C substrate temperatures. The obtained films were characterized by using XRD. The room temperature photoluminescence (PL) spectra of these films have near band edge (NBE) and deep level emission under the excitation of 325 nm radiation. NBE PL peak intensity decreased consistently with temperatures for samples prepared at 400, 450 and 500 ◦C, while a sudden reduction in intensity is observed for the sample prepared at 425 ◦C. A similar effect was observed for the optical transmittance spectra. These effects can be explained on the basis of the change in population of oxygen vacancies as indicated by the change in a values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were coated on amorphous glass substrate at various temperatures in the range 160-500 0C by spray pyrolysis method. The as deposited films were characterised by using XRD and SEM. Wurtzite phase of ZnO was formed at a substrate temperature of 400 0C, highly oriented (002) phase was developed with respect to increase of substrate temperature from 450 to 500 0C. Morphological and growth mode of these films were analyzed with respect to structural orientation of films from wurtzite to highly (002) oriented phase. Present study reveals that substrate temperature was one of the important parameters which determine the crystalline quality, population of defects, grain size, orientation and morphology of the films

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of varying spray rate on the structure and optoelectronic properties of spray pyrolysed ZnO film is analysed. ZnO films were characterised using different techniques such as X-ray diffraction (XRD), photoluminescence, electrical resistivity measurement, and optical absorption. The XRD analysis proved that, with the increase in spray rate, orientation of the grains changed from (1 0 1) plane to (0 0 2) plane. The films exhibited luminescence in two regions—one was the ‘near band-edge’ (NBE) (∼380 nm) emission and the other one was the ‘blue-green emission’ (∼503 nm). Intensity of the blue-green emission decreased after orientation of grains shifted to (0 0 2) plane. Scanning electron microscope (SEM) analysis of the films asserts that spray rate has major role in improving the crystallographic properties of the films. Moreover resistivity of the films could be lowered to 2.4×10−2 cm without any doping or post-deposition annealing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. Fromthe indoor measurements employing a tungsten halogen lamp (50mW/cm2 illumination), an opencircuit voltage of 0.41V and a short-circuit current of 5.6mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74mW/cm2) yielded an open-circuit voltage of 0.46V and a short-circuit current of 9.37mA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials and equipment which fail to achieve the design requirements or projected life due to undetected defects may require expensive repair or early replacement. Such defects may also be the cause of unsafe conditions or catastrophic unexpected failure, and will lead to loss of revenue due to plant shutdown. Non-Destructive Evaluation (NDE) / Non Destructive Testing (NDT) is used for the examination of materials and components without changing or destroying their usefulness. NDT can be applied to each stage of a system’s construction, to monitor the integrity of the system or structure throughout its life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.