7 resultados para Spatial analysis of submerged macrophytes

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time and space resolved spectroscopic studies of the molecular band emission from C2 are performed in the plasma produced by irradiating a graphite target with 1:06 m radiation from a Q-switched Nd:YAG laser. High-resolution spectra are recorded from points located at distances up to 15 mm from the target in the presence of ambient helium gas pressure. Depending on the laser irradiance, time of observation and position of the sampled volume of the plasma the features of the emission spectrum are found to change drastically. The vibrational temperature and population distribution in the different vibrational levels of C2 molecules have been evaluated as a function of distance for different time delays and laser irradiance. It is also found that the vibrational temperature of C2 molecules decreases with increasing helium pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal analyses of the spectra of the laser induced plasma from a polytetrafluroethylene (PTFE) target obtained with the 1.06 mu m radiation from a Q-switched Nd:YAG laser have been carried out. The spatially resolved spectra of the plasma emission show that molecular bands of C2 (Swan bands) and CN are very intense in the outer regions of the plasma, whereas higher ionized states of carbon are predominant in the core region of the plasma emission. The vibrational temperature and population distribution in the different vibrational levels have been studied as a function of laser energy. From the time resolved studies, it has been observed that there exist fairly large time delays for the onset of emission from all the species in the outer region of the plasma. The molecular bands in each region exhibit much larger time delays in comparison to the ionic lines in the plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the emission bands of the CN molecules in the plasma generated from a graphite target irradiated with 1-06/~m radiation pulses from a Q-switched Nd:YAG laser has been done. Depending on the position of the sampled volume of the plasma plume, the intensity distribution in the emission spectra is found to change drastically. The vibrational temperature and population distribution in the different vibrational levels have been studied as function of distance from the target for different time delays with respect to the incidence of the laser pulse. The translational temperature calculated from time of flight is found to be higher than the observed vibrational temperature for CN molecules and the reason for this is explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the outcome of the experimental and theoretical investigations on a new compact drum-shaped microstrip antenna. A new compact antenna suitable for personal communication system(PCS), Global position System(GPS) and array applications is developed and analysed. The generalised cavity model and spatial fourier transform technique are suitably modified for the analysis of the antenna. The predicted results are compared with experimental results and excellent agreement is observed. The experimental work done by the author in related fields are incorporated as three appendices in this thesis. A single feed dual frequency microstrip antenne is presented in appendix A.Appendix B describes a new broadband dual frequeny microstrip antenna. The bandwidth enhancement effect of microstrip antennas through dielectric resonator loading is demonstarted in Appendix C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis explores the outcome of the exhaustive theoretical and experimental investigations performed on Octagonal Microstrip Antenna configurations. Development of the MATLAB TM backed 3D-Conformal Finite Difference Time Domain (CFDTD)Modeller for the numerical computation of the radiation characteristics of the antenna is the theme of the work. The predicted results are verified experimentally and by IE3D TM simulation. The influence of the patch dimensions,feed configurations,feed dimensions and feed positions upon the radiation performance of the antenna is studied in detail. Octagonal Microstrip Antenna configurations suitable for Mobile-Bluetooth application is dealt in detail. A simple design formula for the regular Octagonal geometry is also presented. A compact planar multi band antenna for GPS/DCS/2.4/5.8GHz WLAN application is included as appendix A. Planar near field measurement technique is explained in appendix B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser ablation of graphite has been carried out using 1.06mm radiation from a Q-switched Nd:YAG laser and the time of flight distribution of molecular C2 present in the resultant plasma is investigated in terms of distance from the target as well as laser fluences employing time resolved spectroscopic technique. At low laser fluences the intensities of the emission lines from C2 exhibit only single peak structure while beyond a threshold laser fluence, emission from C2 shows a twin peak distribution in time. The occurrence of the faster velocity component at higher laser fluences is explained as due to species generated from recombination processes while the delayed peak is attributed to dissociation of higher carbon clusters resulting in the generation of C2 molecule. Analysis of measured data provides a fairly complete picture of the evolution and dynamics of C2 species in the laser induced plasma from graphite.